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Inverse Problems for Ergodicity of Markov Chains

ABSTRACT

In this thesis, we study inverse problems for ergodicity of Markov Chains (both
time-continuous and time-discrete) and intend to give practical criteria.

Chapter 1 introduces research background and recalls practical criteria for er-
godicity of Markov Chains. Meanwhile, we present some results in minimal solution
theory, which is our main tool.

Chapter 2 includes our main results. For Continuous-Time Markov Chains, we
obtain inverse problem criteria for strong ergodicity, exponential ergodicity, algebraic
ergodicity and (ordinary) ergodicity. Similarly, we study inverse problems for strong
ergodicity, algebraic ergodicity and (ordinary) ergodicity in time-discrete case.

Chapter 3 gives proofs of our main results. To prove sufficiency, we estimate
lower control for polynomial moments and exponential moments of return time.
On another hand, applying finite approximation method, we prove necessity of our
criteria.

Some applications are included in Chapter 4. Using our inverse problem criteria,
in Section 1, we give new proofs of explicit criteria for both ergodicity and strong
ergodicity of single birth processes (necessity part). In Section 2, we study a special
class of single birth processes and obtain some of its ergodic conditions. In Section 3,
inverse problem criteria are applied to finite-dimensional Brussel’s Model. And a
new proof of non-strong ergodicity of finite-dimensional Brussel’s model is presented.

KEY WORDS: Markov Chain, Q)-process, Ergodicity, Inverse Problems
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Chapter 1

Introduction

As an application of his study in minimal non-negative solution theory, Hou
gave a practical criterion for ergodicity of Continuous-Time Markov Chains in [17].
Then in 1981, Tweedie [11] studied criteria for three classical types of ergodicity:
(ordinary) ergodicity, exponential ergodicity and strong ergodicity. Mao [9,10] and
Chen and Wang [5] studied criteria for algebraic ergodicity. According to their
practical criteria, a solution to some inequality group implies, for example, strong
ergodicity of a Markov Chain. However, using their criteria, one may find it not that
easy to make sure a (Q-process, say, not being strongly ergodic. In fact, Tweedie’s
strong ergodicity criterion reads as follows:

Tweedie’s Strong Ergodicity Criterion. Let ) be an irreducible reqular Q-
matriz and H a non-empty finite subset of E. Then the Q-process is strongly
ergodic iff there exists a bounded solution (y;),.p to inequality

ZQijyj§—17 i ¢ H.

jEE

If we are proving a ()-process is not strongly ergodic using this criterion, we have
to show that any solution to the above inequality is unbounded. Neverthless, this is
not so exercisable. We intend to complement ergodicity criteria in this thesis. For
instance, can we assert non-strong ergodicity of a ()-process from some inequality
and one of its solutions?

Our work is based on some shining examples. It is worthy to mention that
Chen [2] gives a practical criterion for uniqueness of Q-processes, which is actually
an illuminating model and a precurssor for this thesis. Explicit criteria for ergodicity
and strong ergodicity of single birth processes (obtained by Yan and Chen [13] and
Zhang [14], respectively) serve as concrete examples and catalyst for this thesis.

Since we are dealing with ergodic properties, we assume processes considered
are all recurrent without loss of generality. And we will consider not only continuous-
time but also discrete-time Markov Chains.



Let’s begin with minimal solution theory, which is a powerful tool in the study
of Markov Chains.

1 Minimal Solution Theory Preparations

References [4, Chapter 2] or [17, Chapter 2] give a thorough introduction to
minimal solution theory. Most propositions in this section are taken from [4,17],
except for our original Lemma 7.

Let E be an arbitrary non-empty set. Denote by 5 a set of mappings from
E to R;=[0,+00]: J# contains the constant 1 and is closed under non-negative
linear combination and monotone increasing limit, where the order relation “>” in
J is defined pointwisely. Then 7 is a convex cone. We say A: ¢ — J is a cone
mapping if A0 =0 and

Alafi +cafa) = aAfi + A f, for all ¢1,¢2 > 0 and fi, fo € .
Denote by <7 the set of all such mappings which also satisfy the following hypothesis:
FC > f, T f implies Af,, T Af.

Definition 1. Given A € &/ and g € . We say f* is a minimal non-negative
solution (abbrev. minimal solution) to equation

f=Af+g, xz€E, (3)

if f* satisfies Eq. (3) and for any solution f € 5 to Eq. (3), we have

=25, xekE

Theorem 2 ( [4, Theorem 2.2]). The minimal solution to Eq. (3) always exists
uniquely.

Definition 3. Let A, A € & and 9,9 € J satisty

Then we call
f=2Af+y, ze l (4)

a controlling equation of Eq. (3).

Theorem 4 ( [4, Theorem 2.6], Comparison Principle). Let f* be the minimal so-
lution to Eq. (3). Then for any solution f to Eq. (4), we have f > f*.

10



By Theorem 2, we may define a map
my 2 I — I,
g mag,

where m4g denotes the minimal solution to Eq. (3).

Theorem 5 ( [4, Theorem 2.7]). my is a cone mapping. For {A,} C &7, A, T A

and {g,} C I, g, T g, we have A € &7 ,g € H and ma, g, T mag.

Theorem 6 ( [4, Theorem 2.10]). Given an arbitrary non-negative ]?'(0) satisfying

0 < fO < pf* for some non-negative number p, set
For < AF 4g, 0.

Then we have f™ — f* (n — 00).

Lemma 7. Let f* be the minimal solution to Eq. (3) and ]7 be a non-negative

function satisfying " ~
f<Af+g, z€E.

*

Iff< pf* for some non-negative number p, then fg f*.

Proof. Assume p > 1 without loss of generality. Define

For —AF b, nz0

We claim N
JERE N as n — oo.

In fact, by Theorem 6, we have

f(”) — f*, as n — oo.

So we need only prove the monotonicity. According to Eq. (5),

F0) < AFO) |, _ F)
JUOSAfY 9=

Now if f < 0+ for some n > 0, then

J’F(n+1) _ AJ?(n) +g< AJ?(nH) t+g= J’F(n+2).

So the monotonicity holds by induction. It follows immediately that

F=ro<r.
Lemma 7 is proved.

11
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2 Preliminaries for Continuous-Time Markov Chains

Consider an irreducible regular Q-matrix @) = (g¢;; : 7,7 € E) on a countable
state space £ with transition probability matrix P (t) = (p;; (t)). We say the @-
process is

(1) ergodic, if for each i, || p;. (£) = 7 [lvar =Y _ |pij (£) — 5] — 0, as t — oo;
jEE
(2) (algebraic ergodicity) f-ergodic for some integer ¢ > 1, if for each i,j € E,
| pij (t) — 7 =0 () as t — oo
(3) exponentially ergodic, if for each i,j € E, |p;; (t) — 7| = O (e™”") as t — oo for
some 3 > 0;

(4) strongly ergodic, if lim sup || pi. (t) — 7 ||var= 0.
t—o00 icE

Note that we say a ()-process is 0-ergodic when it is recurrent for ease of terminology.
Also, we say a Q-process is 1-ergodic if it is ergodic.
Set
og=inf{t >n : X, € H}, HCE,

where (Xt)t>0 is the Q-process and 7, is the first jump time. There are probabilistic
descriptions of above notions. A Q-process is

(1) ergodic if and only if (abbr. iff) max E;op is finite for some (equivalently, for
1€

any) non-empty finite subset H of E;

(2) (algebraic ergodicity) ¢-ergodic for some integer ¢ > 0 iff max E;o%; is finite for
1€

some (equivalently, for any) non-empty finite subset H of F;

(3) exponentially ergodic iff max E;e# is finite for some A (with 0 < A < ¢;,Vi € E)
S

and some (equivalently, for any) non-empty finite subset H of E;

(4) strongly ergodic iff (E;on )4y is bounded for some (equivalently, for any) non-
empty finite subset H of F.

The following minimal solution assertions are well-known.

Theorem 8 ( [10, Theorem 3.1]). For any ¢ > 1, the moments of return times
Eiow, Eio%, - - Eiot, are inductively the minimal solution to the following (-family
of systems for 0 <n <l —1,

igH qz

12



where ¥ = 1 (te E) and Il = (IL;; : i,j € E) is the embedding chain of the Q-

process:
M,=(1-6;,) %, ijek

When ¢ = 1, Theorem 8 gives

Theorem 9. (E;oy),.p, is the minimal solution to

1
xi:ZHijxj+_7 1€ L.
j¢H ¢

Theorem 10 ( [4, Theorem 4.48]). For a non-empty finite subset H of E and A > 0
with X < q; for alli € E, set ey (A) = 5 (Ee?® — 1) = [[F MNP (o > t)dt  for
each i € E (cf. [4, Page 148, Equivalence of Theorems 4.45 and 4.44]). Then
(eirr (N)) ;e 18 the minimal solution to

U 1 :
xi—qi_)\ZHijxj%—ﬁ, 1€ b
jEH

Now we state Hou's, Tweedie’s and Mao’s criteria.

Theorem 11 ( [17, Theorem 9.4.1]). Let @ be an irreducible regular Q-matriz and
H a non-empty finite subset of E. Then the QQ-process is ergodic iff there exists a
finite non-negative solution (y;),cp to the inequality

> ayy < -1, i¢ H,
JjEE
ZZqijyj < Q.

i€H j£i

Theorem 12 ( [10, Theorem 1.5]). Let Q be an irreducible reqular QQ-matriz and
H a non-empty finite subset of E. Then the Q-process is (-ergodic (¢ > 1) iff there
exists a finite non-negative solution (y;),.p to the inequality

> gy < —(Eoft, ¢ H,

jJEE

Z Z qijy; < OQ.

i€H j#i

Theorem 13 ( [11, Theorem 2]). Let Q be an irreducible reqular Q-matriz and
H a non-empty finite subset of E. Then the Q-process is exponentially ergodic iff

13



for some A > 0 with A < ¢q; for all i € E, the following inequality has a finite
non-negative solution.

ZQijyj < Ay — 1 i¢ H,
JEE
ZZ%J’ZH < 0.

i€H ji

Theorem 14 ( [11, Theorem 2|). Let Q be an irreducible reqular Q-matriz and H a
non-empty finite subset of E2. Then the QQ-process is strongly ergodic iff there exists
a bounded solution (y;),cp to the inequality

Z%‘jyj < -1, i¢ H.

JjEE
3 Preliminaries for Discrete-Time Markov Chains

Let P = (P;) be an irreducible aperiodic transition matrix and (X,),,., be the
process. Define ogy=inf{n > 1: X,, € H} (H C E). Then the chain is

(1) ergodic iff max E;op is finite for some (equivalently, for any) non-empty finite
(S
subset H of F;
(2) (algebraic ergodicity) (-ergodic for some integer ¢ > 0 iff max E,ot; is finite for

some (equivalently, for any) non-empty finite subset H of F;

(3) geometrically ergodic iff max E;p°" is finite for some p > 1 and some (equiva-
1€

lently, for any) non-empty finite subset H of E;

(4) strongly ergodic iff (E;op )4y is bounded for some (equivalently, for any) non-
empty finite subset H of F.

We have similar minimal solution assertions in time-discrete setup.

Theorem & ( [9, Lemma 3.1]). For any ¢ > 1, the moments of return times
Eiow, Eio%, - -, Eiot, are inductively the minimal solution to the following (-family
of systems for 0 <n < —1,

oM =3Pt 1, e B,
J¢H
where xéo) =1,i1€b.

When ¢ = 1, Theorem 8 gives

14



Theorem 9’ ( [4, Lemma 4.29)). (Eiopn),.p s the minimal solution to
xZ:ZPij:cj—i—l, 1€ F.
J¢H

Theorem 10'. For a non-empty finite subset H of E and p > 0, (E;p7™)._p is the
minimal solution to

Ti=p Zpij%“i‘PiH ) i€ E.
j¢H
Proof. Set
w(p)=pPy, i€E
o) = 0> Py (p n>1 i€E.
J¢H
We claim
up)=p"Bilon=n), n>1 i€k
In fact, yz-(l)(p) = pPy = pP; (o = 1) for each i € E. If the claim holds for some
n > 1, then
n _induction
w0 =0 Py (o ZP”p (o8 =n)

hypotheszs
j¢H

PP (o =n+1).

So the claim is proved by induction. Because

E;p7f = Zp”R- (og =n) = Zyi(n)(p),
n=1 n=1

(E;p?#),c is the minimal solution by the second successive approximation scheme
(cf. [4, Theorem 2.9]). O

As for time-discrete analogue of Theorems 11 to 14, we refer to [4,9] for details
on these results.
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Chapter 2

Main Results

In this chapter, we present our main results. Proofs will be given in Chapter 3.

1 Inverse Problems for Ergodicity of Continuous-Time Markov

Chains

We begin with criteria in time-continuous case.

Theorem 15. Let () be an irreducible reqular Q-matriz and H a non-empty finite
subset of . Then the Q-process is non-ergodic iff there is a sequence {y(")}oo

n=1’
where y™ = (yi(n)> for eachmn > 1, and {y(")}ooil satisfies the following condi-
i€E n=

tions:

(1) Supygn) < 00 for eachn > 1;
S

(2) For eachn > 1, ( (n)> solves inequality
i€k

i

1
Yi <2Hijyj+—7 1€ LB (6)
j¢H 4

(n)

(3) supmax y§"’ = 00 (or equivalently, lim maxy;" = o).
n>1 1€l n—oo i€H

Theorem 16. Let () be an irreducible reqular Q-matriz and H a non-empty finite
subset of E. Then the QQ-process is non-strongly ergodic iff there is a sequence

{y(n)}ooﬂ; where y(") = (ygm) y for each n > 1, and {y(")}oofl satisfies the
n= i¢H n=
following conditions:
(1) supy\™ < oo for each n > 1;
i¢H

17



(2) For eachn >1, (yz(n)) . solves inequality
igH

Zﬂwyﬁ— i ¢ H; (7)

JEH

(3) supsup y§”) = 0o (or equivalently, Tim supy.™

;= 00).
n>1 i¢gH N0 it H
Remark. a) We make a remark about the conditions in above two criteria. Let

{y(")}oof with y(") = <y§”)> be a sequence satisfying the conditions in Theo-
i€E

rem 15, then {y }Ooi with 7™ (yfn)> y is a sequence satisfying conditions
- i

in Theorem 16. We need only demonstrate condition (3). In fact, we have

1
OO = Sup max y( ) sup max Z HUy] + — < sup supy —f‘ C
n>1 t€H n>1 €H JeH qi n>1 j¢H

where C' is finite. And it follows that supsup y( ") = 50. We have illustrated the
n>1 ]¢H

third condition in Theorem 16.
b) Testing sequence in Theorems 15 and 16 need not be non-negative. Take The-
orem 15 for instance. Let {y(”) }:;1 be a sequence satisfying the conditions in The-

orem 15. Then for each n > 1, y™ = (ylgn)) is a function on E. And y™ is
i€E

not required to be non-negative. We may even allow jnf yi(n) = —o00. However, 3™

should be a finite-valued function. In other words, for each n > 1 and ¢ > 1, yz(")
a finite real number.

The following inverse problem criterion for algebraic ergodicity generalizes The-
orem 15.

Theorem 17. Let () be an irreducible regular QQ-matriz and H a non-empty finite
subset of E. Suppose the Q-process is {-ergodic for some non-negative integer ,
then the Q-process is not (£ + 1)-ergodic iff there is a sequence {y ”)} s where

y™ = (yl(")) for eachn > 1, and {y }Oo_l satisfies the following conditions:
i€E =

(1) supy\™ < oo for each n > 1;
icE

(2) For eachn > 1, (yf”) solves inequality
i€E
(+1 .
Y g ZHUyJ + <(]—-)Ei0§{’ 1€ E, (8)
jeH ‘

18



(3) sup max ygn) = oo (or equivalently, lim max y,f”)

i =00).
n>1 €H n—oo i€H

Theorem 18 is a non-exponential ergodicity criterion for )-processes.

Theorem 18. Let () be an irreducible reqular QQ-matriz with 1nbf ¢ >0 and H a
1€

non-empty finite subset of E. Then the QQ-process is non-exponentially ergodic iff

there is a sequence of positive number {\,} —, and a sequence of function {y(”)}zozl

on E satisfying the following conditions:

(1) lim A, =0;

n—oo

)

(2) For eachn > 1, <y(n)> is finitely supported and solves inequality
i€E

i€ L 9)

(3) sup max yl(n) = 00 (or equivalently, lim maxy
n>1 t€H n—oo i€H

(n)

[

=00).

2 Inverse Problems for Ergodicity of Discrete-Time Markov
Chains

Theorem 15'. Let P = (P;;) be an irreducible aperiodic transition matriz and
H a non-empty finite subset of E. Then the chain is non-ergodic iff there is a

sequence {y(”)}oo where y™ = < (n)> for each n > 1, and {y(”)}oo_l satisfies
icE n=

n=1’ t

the following conditions:

(1) supy\™ < oo for each n > 1;
icE

)

(2) For eachn > 1, < (n)> solves inequality
i€E
Ui S sz‘jyj +1, SO (6")
j¢H

3) supmaxy\” = walently, Tm max ™ = o).
(3) nlgl)rzré};(yz oo (or equivalently, Jim maxy; o0)

Theorem 16'. Let P = (P;;) be an irreducible aperiodic transition matriz and H a
non-empty finite subset of E. Then the chain is non-strongly ergodic iff there is
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a sequence {y(”) }oo

n=1"’
the following conditions:
(1) supy™™ < oo for eachn > 1;
i¢H

1

where y™ = (y(n)) . for eachn > 1, and {y(")}oo_l satisfies
i¢H n=

(2) For eachn > 1, (y§n)> ) solves inequality
i¢H
i < Py +1, i ¢ H; (7')
J¢EH

(3) supsup y§”) = 00 (or equivalently, lim supy

n>1 i¢gH N0 ¢ H

(n)

;o =00).

Theorem 17'. Let P = (P;;) be an irreducible aperiodic transition matriz and H a
non-empty finite subset of E. Suppose the chain is {-ergodic for some non-negative
integer ¢, then the chain is not (£ + 1)-ergodic iff there is a sequence {y(”)}zozl, where

Y™ = (yi(n)) for each m > 1, and {y(")}oo_l satisfies the following conditions:
i€E n=

(1) sup yl-(n) < 00 for eachmn >1;

i€l

i

(2) For eachn > 1, ( (n)> solves inequality
i€E

Ui S Zpijyj +Eioy, ek (8)
J¢H

(3) sup maxy™ = o0).

= 00 (or equivalently, lim maxvy
n>1 t€H n

—o0 i€H
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Chapter 3

Proofs of Criteria for Inverse

Problems

In this chapter, we assume F = {0,1,2,---} and H = {0} without loss of
generality. Since the proofs for discrete-time Markov Chains are similar with those
for continuous-time Chains, we only give the proofs in time-continuous setup. One
may easily prove time-discrete results using similar technic.

Before proceeding further, let’s briefly describe the main points in our proofs.
Take non-ergodicity for instance. In order to prove the expectation of return time
to the state 0 is infinity, we first get a lower control for the expectation of return
time. Then a sequence of increasing lower control implies the desired result. On an-
other hand, finite approximation method would guarantee existence of an increasing
sequence of lower control and therefore necessity of our conditions.

This chapter is organized as follows. Sections 1 to 4 are devoted to the proofs
of Theorems 16 and 17. Then in Section 5, we prove Theorem 18.

1 Lower Control for Polynomial Moments

Theorem 19. Let P = (P,;) be an irreducible conservative transition matriz on E.
Then the chain is transient iff the inequality

has a solution z = (z;);5, satisfying

—o0 < infz; < z.
i>0

As Theorem 19 is a slight modification of [4, Theorem 4.25], its proof would
not be included here.
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Lemma 20. Let ¢ be a non-negative integer and ) an irreducible reqular QQ-matriz
on E. Assume further inequality

; (+1

Yi < q—]yj (e+ )Ez S, > 1
j>1 q; 7
JFi

has a finite solution y = (y;),»; with supy; < oo. If the Q-process is ({ + 1)-ergodic,
i>1
then we have

Yi < Eﬂé“; 1> 1.

Proof. Since the Q-process is (¢ + 1)-ergodic, (Eiagﬂ)pl is finite and is the minimal
non-negative solution to

Set

0, 1 =0,
“i= { Eiagﬂ — Yi, 1> 1.
Then (z;),, satisfies
Zszzj <z, 121,
j=0

inf z; > —o0.

i>0
The @-process is recurrent by our assumption, so is its embedding chain. Apply-
ing Theorem 19 to the embedding chain IT = (II;;), we arrive at the conclusion
that

Zi>ZO7 Z>1

In other words,
Y < Eioptt, i

WV
—

]

Remark 21. The hypothesis “supy; < oo” cannot be removed from Lemma 20. In
i>1

fact, we consider an ergodic Q-process, then (E;09),, is the minimal non-negative

solution to

Z qij 1 .
j>1 1 i
J#
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On another hand, fix an arbitrary € > 0, if we take

$ge) = Ei00 +¢,

i—1 i—1
WIS -, i,
k=0 k=0

)

then <$(€)> also solves Eq. (10) (cf. [6]). Because the Q-process is assumed to be
i1

ergodic and thus recurrent, we have Z F,io) = oo (cf. [4,6]). Note that

k=0
i—1
I’Ea) — EiUO =& Z F]go),
k=0

(€)

we may conclude that (:pl ) is unbounded. Meanwhile, we have
i>1

Eioo < 2\,  i>1.

This implies that the condition “supy; < co” cannot be removed.
i>1
It is straightforward to write the time-discrete analogue of Lemma 20 and we
shall omit its proof.

Lemma 20'. Let { be a non-negative integer and P an irreducible aperiodic transition
matriz on E. Assume further inequality
vi <Y Py +Eog, izl

i>1

has a finite solution y = (yi),, with supy; < co. If the chain is (£ + 1)-ergodic,
i>1

then we have

yi < Eiog™, i>1.

2 Sufficiency of Theorems 16 and 17

Proof of sufficiency of Theorem 17. If the Q-process is (¢ + 1)-ergodic, by Theo-
rem 8 and Lemma 20, for each n > 1,

. . (41 ; (41
y(() ) < Z qﬂy](- )+ ( )ané < Z qﬂEjogH + ( )ané = Eooit.
1 do ‘ =1 do ai

It follows that

oo = supyy” < Eooh™ < oo,
n=1

a contradiction. O]
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Proof of sufficiency of Theorem 16. It suffices to prove Theorem 16 when the Q-
process is ergodic. By Lemma 20 with ¢ = 0, we have

v < By, i1, n>1
Consequently,
00 = Sup sup yi(n) < supE;op.
n>1 i>1 i>1
Thus the )-process is non-strongly ergodic. Our proof is completed. H

3 Approximation for Polynomial Moments

Let ¢ be a fixed non-negative integer. To prove necessity of Theorems 16 and 17,
we consider truncated equations for each n > 1:
id C+1 .
T, = &xj + (+ >Ei0§, 1<i<n. (11.n)
1<<n i 4

Denote the minimal non-negative solution to Eq. (11.n) as
2 = <x§"), 1<i< n) )

(n)

i

Also, we set M,, = max x
1<i<n

Lemma 22. If the QQ-process is (-erogdic, then we have
(1) M, is finite for each n > 1;

(2) Eiolt' = 1im?t 2™ for each i > 1, and (M,), ., is increasing;
n—00 -

(3) (My),5, is bounded iff (Eio5™)

is1 8 bounded;

(4) Pick ¢ = 0, then it follows from item (3) that the Q-process is non-strongly
ergodic iff sup M,, = oc.

n=1

Proof. a) Since the Q-process is (-ergodic, we may pick a positive constant C,,:

C, = (£ +1) max Ejof + 1.

1<i<n

Now consider inequality

g C
xl>zq—?a:j+—n, 1<1<n
15en & qi
J#i



Introducing a change of variable z; = %, we have the following equivalent form of
the above inequality: "

- s 1 )

T = E &xJA——, 1<i<n. (12.n)
1<<n 4qi qi
i

By Theorem 9, the minimal solution to Eq. (12.n) is the expectation of return time
to state 0 of the Q™-process and is therefore finite, where Q™ has the following
form:

qio + Z Gk qu1 Q12 - Qin
Q(n) — k=n+1

4no + Z An.k dnl 4n2 " Q4nn
k=n+1 (n+1)x(n+1).

Now by Theorem 4, M, is finite.

b) Recall Theorem 8, (Eiagﬂ) | is the minimal solution to

(>

Exploiting Theorem 5, we obtain the second assertion.
¢) Some trivial manipulation leads to the other two assertions. And details are
omitted. n

4 Necessity of Theorems 16 and 17

Proof of necessity of Theorem 17. Suppose the Q-process is not (¢ + 1)-ergodic. Set

- (+1 .
qﬁmﬂ. )+ (t+ )]ang, 1 =0,
() =1 do qo0
x; 1<i<n,
0, i>n+ 1.
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By the monotone convergence theorem,

; 1
lim y, ™) — lim Z qﬂy(n) + MEgUé

g 1 eorem
_ZQOJ]E (1 (0 + )Eo ¢ Th 8 angﬂzoo.

qo

Now it is easy to check that { y(”)}oo_l with ™ = <yf")> is a required sequence.
n= )
Necessity of Theorem 17 is proved. O]

Proof of necessity of Theorem 16. Assume the ()-process is non-strongly ergodic.
We pick ¢ = 0 in Lemma 22 and set

w_ Ja”, 1<
Yy, = )
0, 1=

+ /A

n7
1

Then {y(” } is a sequence required in Theorem 16. In fact, we may easily deduce
that for each n > 1, y™ solves Eq. (7). Meanwhile, for each n > 1, we have

sup yEn) = M, < oo.

i1

By the last assertion of Lemma 22, sup M,, = co. Therefore,

n>1

sup sup ygn) = sup M,, = oc.

n>1 i>1 n>1

Hence we prove necessity of Theorem 16. ]

5 Proof of Theorem 18

Since we are discussing exponential ergodicity in this section, we assume the
process is ergodic without loss of generality. Our idea for proof of Theorem 18 is
similar with that of Theorems 16 and 17 but technical details here are different and
more complex. Briefly speaking, we first use Lemma 7 to get a lower control for
exponential moment of return time. On another hand, we use finite approximation
to prove the necessity.

Let @ be a Q-matrix on E with jné ¢; > 0. Fix an integer N > 1 and consider
1€
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(Q-matrix on finite states
_N 1 1 --- 1

0
qio + Z Gk 11 Q12 QIN
Q(N) _ k=N+1

qno + Z dNk  gn1 gn2 - NN
E=N+1 (N+1)x (N+1).

Meanwhile, we consider the following equation for A € (0, iné qi):
1€

i ij 1
xT; = g b\ q—j$3+ )\,
q; — 1N qi q; —

JF#i

0<i<N. (13)

Denote the minimal solution to Eq. (13) as <a:(’\’N) 0<:< N). Then by Theorem 5,

we have
xé’\’N) 1 ego (A) as N — o0.

_ 1.
Also, we set A = 3 Zlélé G-
Lemma 23. (1) Assume the Q-process is non-exponentially ergodic, then

lim 1 x(x’m = eqo (X) = o0;

N—oo

(2) If x((]/\’m is finite for some )€ (O, ingqi), then for some )€ (X, ingqi),
1€ 1€
()

x, is finite;
(W) 3 : (AN) . . ~
(3) If x, < oo for some A € |0, mé ¢ ), then xy7" is continuous at A\ as a
1€

function of \;
(4) If :cg/\’N) — 00 for some \ € (0, _iné qi> , then
1€

lim xé’\’N) = 00,
A
xéA’N) = 00, A> A

(AN)

In other words, x is continuous at A as an extended real-valued function;
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(5) For any fized integer N > 1,

lim :E(({\ N) < Epog < 0.

AL0
Proof. a) The first assertion is a direct inference of Theorem 5 and non-exponential
ergodicity.

b) By Eq. (13), (Qfo’N)

,0<1 < N) is a finite solution to

i ij 2 .
T; = q~zﬁx]~+ =, 0<t <N
qi A 1<GEN i q; — A
J#i
So it satisfies
7 1 1
T; > qN &J%— =, 0<i1<N
4di )\1<j<N 4 ¢ — A
J#i

Consequently, (Z:El(/\’N), 0<:< N) also satisfies

Z @xj . 0<i<N,
q 1<3<N @ i — A
JF#i

~ ~ AN )
for some A slightly larger than A. Now by Theorem 4, a:[() ) is finite.
¢) By the second conclusion, to prove the third assertion, we need only prove

x(()A’N) is continuous on the interval (O, X] Because

1 )
M 3 <E§Q Jeroo _ 1) : 1<i< N,
xE’\’N) (t=1,2,---,N) is continuous on the interval (O, X} by Lebesgue dominated
convergence theorem. Furthermore, xéA’N) is continuous on the interval according
to equality:
; 1
Ty = 40 b\ qﬂﬂﬁj -+ >\
Qo= A oy Do do —

d) The fourth assertion is obvious according to above discussions.
e) Now we prove the last assertion. Since the -process is assumed to be
ergodic, Eqoy < oo. We need only illustrate

lim a:(()’\ N) < Egog.

L0
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By the proof of “Equivalence of Theorems 4.45 and 4.44” in [4, Page 148], we have

> &Y
M) / e)‘tIP’Z-(Q ) (o0 > t)dt, i
0

WV

1.

(2

Because the Q")-process, as a process on finite state space, is exponentially ergodic,
Lebesgue dominated convergence theorem gives

o0 (N) (N)
liﬁ)ll‘()\’N) = / ]P)l(Q ) (O‘o > t) dt = <Q ) 0p < Eia'o, 12> 1,
0

where the last inequality is by Theorems 5 and 9. Furthermore, by Eq. (13)

1
lim m(())" ) = Z qOJ /\ N 1 lim Z QO] IE 00 + —
MO Aw qO N 1< <N MO Go — 15N 4 do
1
Z quE 500 +— = E()O'Q
= o 4o
Therefore, the last assertion holds. O
Corollary 24. For each N > 1, xé’\’N) is an extended real-valued continuous function
as a funtion of A on interval (O, A } O

Proof of necessity of Theorem 18. For each positive integer n < Egog, we define
yz( "= (i € E) and \, = X\. And for each n > E0, we now construct
gy = <yz(”)> and )\, satisfying

i€E

y(()") >n, M\ < —.
n

In fact, by the first assertion of Lemma 23, we may pick a large N,, such that

ng’Nn) > n.
Then for each N > N,,,
(AN)
T = n.

Furthermore, by Corollary 24 and the last assertion of Lemma 23, for each N > N,,,
there exists A (n, N) € (0, | such that

AN
For ease of notation, we write ¢ = Ngl]g A (n,N). Now, we claim ¢ = 0.
Otherwise if ¢ > 0, we have
eoo (¢) = lim 2™ < n,
— 00



contradicting non-exponential ergodicity.

~ 1 1
Consequently, we may pick A (n, Nn> < — and denote it as \,. Then )\, < — and
n

. n
An,Nn
:cg ) _ n. Set

//\

u" = {”’SA"’N"), 0<i<N,
' 0, ¢>ﬁ+1

It is now straightforward to verify that {\,} ~, and {y(”)}zozl are the desired se-

quences. So necessity of our condition follows immediately. O]
Proof of sufficiency of Theorem 18. a) We first demonstrate

ui" < egn (An) n>1.
In fact, since <yl-(n))i€E is finitely supported for each n > 1, we may pick N, such
that

1
" < T LSi<N,
" 1<<Ny, % % — An

JF#i

At the same time, denote the minimal solution of

i ij 1 .
T, = 4 Z &quL = 1<i<N,

qi — nléjéNn q; qi — An

J#i

as (:L'Z(»’\”’N”), 1 <1< Nn>, which is positive. Then by Theorem 5 and Lemma 7,

yl(n) (An,Nn) < eio (M) S 1<i<N,.
It follows that
(n) L
Yo
1<_7<N N An
—ejo (An) +
G = An Sy, DO G = Mn
q Qo 1 Theorem 10
° “ejo (An) + = o (An)
do — An j>1 do d0 — A

This is exactly the desired inequality.
b) For an arbitrary A > 0, when A, < A,

y((]n) < €00 ()\n) < epo ()\) .
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Consequently,

oo = Tim g5 < eao ().
n—oo

It turns out that Eqe??® = oo (A > 0). So the Q-process is non-exponentially ergodic.
Sufficiency of Theorem 18 is proved. ]
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Chapter 4

Some Applications

In this chapter, we shall present some applications of our criteria for inverse
problems.

1 Explicit Criteria for Single Birth Processes: Alternative

Proofs

Explicit and computable criteria for ergodicity and strong ergodicity of single
birth processes have been studied in [13,14], respectively. In this section, we present
alternative proofs (of the necessity parts) for these explicit criteria.

Let @ be an irreducible regular single birth Q-matrixon £ = Z, = {0,1,2,--- }.
We have

Gii+1 >0, vy =0, 120,522

Define ¢*) qu for 0 < k <n(k,n>0)and

EP=LF qnnHZ WE, 0<isn,
n F(k)
dy=0, d, 1+ ) ¢V U n>1. 14
° qnn+1 Z z;Qk,k+1 - ( )

Also, we define

k
_ody
d = sup Zn—O

0 Y0, F

It is well-known that the Q-process is recurrent iff Z FY = oo (cf. [4,6)).
n=0
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Lemma 25. Let Q) be an irreducible regular single birth QQ-matriz and N a positive
integer. We investigate the following (truncated) equation:

qij 1 .
T = Z—xj—i——, 1<i<N. (15)
1en & 4
J#
(1) Eq. (15) has a unique solution, denoted as (ng), :EgN), e ,ZL‘S\],V)>,

(2) We have recurrence relation:

(3) the unique solution is positive;

(4) Iim 2™ >d.

N—oo

Proof. a) Eq. (15) has the following equivalent form:
N
j=1

To prove regularity of the above linear system, we need only prove the following
homogeneous equation

N
Z%’jxj =0, I<i<N (16)

Jj=1

has only trivial solution.

Otherwise, if Eq. (16) had a non-trivial solution (%1, T, - -+ , Ty ), assume T; > 0
without loss of generality. We claim T < To. Since if T1 > Ty, Eq. (16) with ¢ =1
leads to

0 = quT1 + q12T2 < quT1 + 1271 <0,

a contradiction. So we obtain T; < Ty. Furthermore, we may proceed to prove that
Tj < Tpy1 using similar arguments for £ =2,3,--- | N — 1. That is

T1 STy < - < Iy
Since the solution is non-trivial, we have Ty > 0. Therefore,
0 =qmT1 + qnoT2 + -+ - + qN.N-1TN-1 + N NTN
= (gv1 +aqn2 + - Fqu -1 + qvN) Ty <0,
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a contradiction. So Eq. (16) has only trivial solution. In this way, we prove the first
assertion.

b) To prove the second assertion, we mimic the proof of [14, Lemma 2.1]. Define
vozng), vn:x,(ﬁ)l—xgv), 1<n<N-1.

From Eq. (15), we easily derive that

(an k—1> 1<n<N-1

By induction, v, = vOFT(LO) —d, for 0 < n < N —1. And our assertion follows
immediately.

c) If x( ) = 1n]£1n]\[:1:2J ) <0, then
<k<

N i—1

N N N N

—1= E qijxﬁ- ) = g i <$§ ) — )> — gy
i=1 j=1

+ (1 —in) Gisit1 ( 511) xEN)) - 5i,NQi,i+1x§N) =0,

qn n+1

where 0 is the Kronecker delta. This contradiction infers that the unique solution
is positive.
d) By the second assertion and the positiveness of the solution, we have

k—1
(N) Zn 0 d
> max
1<k<N Zk s
So the last assertion follows immediately. O

We are now in position to present our alternative proofs for explicit criteria of
single birth processes.

The following ergodicity criterion is due to Shi-Jian Yan and Mu-Fa Chen [13].
Here, proof for sufficiency is picked from [13] for completeness.

Theorem 26. Let () be a reqular single birth QQ-matrix, then the QQ-process is ergodic
iff d < 0.

Proof. a) When d < oo, we define

k—1

=0 y=>» (FY-d,), k>L

n=0

Then (y;),-, satisfies the condition of Theorem 11 with H = {0}. So the Q-process
is ergodic when d < oo.
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b) When d = oo, for each N > 1, we define

1
=M+ = g™ =2V 1 <i<N), gy =0 = N+1).
q1

Because Nh_m ng) > d = 00, it can be easily seen that the conditions of Theorem 15
—00

are satisfied by the sequences {y(N )}]OVOZI and H = {0} . So the @Q-process is non-
ergodic if d = oo. O

The following strong ergodicity criterion is due to Yu-Hui Zhang [14].
Theorem 27. Let Q be a reqular single birth QQ-matrix, then the QQ-process is strongly

ergodic iff Supz <F(0)d d; ) < 00.
k>0

Proof. We assume the process is ergodic without loss of generality. In light of The-

orem 26, d < 00 equivalently

a) When supz <F(0 d—d; > < 00, we define
k>0

k-1
vo =0, y=Y (FVd—d,), k>1.

n=0
Then (y;),5, satisfies the condition of Theorem 14 with H = {0}. So the Q-process
is strongly ergodic. This proof of sufficiency is of course not original but picked
from [14].

k
b) When sup Z (F»(O)d — dj) = 00, for each N > 1, we define

J
k20 =5

y =V A<i<N), yV =00 > N+ 1).
It is obvious that sup y( )

i>1 N—=oo j>1
In fact, for an arbitrary & > 1

(N) _

< oo for each N > 1. We now show lim sup Yy, = 00.

k—1
m supy!™ > Tm 2V = Tim (F,g%gm —dn>
N—oo ;>1 N—o0 N—ro0 o
k—1
> (FYd—d,)
n=0
Taking supremum with respect to & on both sides, we obtain ]\}lm sup yZ( ) = .
—00 i>1
The conditions of Theorem 16 are satisfied by the sequences {y(N ) } v and H = {0}.
So the @-process is non-strongly ergodic. ]
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2 A Special Class of Single Birth Processes

In this section, we study conservative single birth Q-matrix @ = (¢;;) with

i+l P30, j=it1,
qij = ai>07 Z>17]:07
0, other i # j.

Assume there are infinitely many non-zero «;, so @ is irreducible. The following
illuminating example is a catalyst for this section.

Example 28. It is obvious that the Q-process is unique for arbitrary {a;};- .

1
(1) If ; = = for sufficiently large i, the QQ-process is transient for v > 0.
7

(2) If a; = for sufficiently large 1,

log” i
(a) the Q-process is transient for v > 1;

(b) the Q-process is null recurrent for v = 1;

(c) the Q-process is ergodic but non-exponentially ergodic for v € (0,1).

1
(3) If a; = m for sufficiently large i, the QQ-process is ergodic but non-
oglogi

exponentially ergodic for v > 0.

(4) If

1 . e

o — { -, 1 1s an odd positive integer,
i= N1
1, 1 15 an even positive integer,
the QQ-process is strongly ergodic.

(5) The Q-process is strongly ergodic if a; =1 (i > 1).
Remark. 1t is easy to write

100 = ) ?
’ (+1+ac) k+24+an \(Zl+1+a ) (i+1+a,)

k=i =i

WV

where we put ay = 0. But this explicit expression is hard to handle.
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2.1 Recurrence Criterion
We begin with recurrence criterion in time-discrete case.

Lemma 29. Let P = (P;;) be an irreducible conservative transition matriz on
Z, =1{0,1,2,--} with

Di, 1207]:7'—’_17
0, other i,5 > 0.

o
Then P is recurrent iff Hpi =0.
=0

Proof. By Theorems 4.24 and 4.25 in [4], we consider equation

(1 = pi) yo + PiYis1 = Ys, 12> 1. (17)
Setting yo = 0, we obtain a recurrence relation:

1 .
Yir1 = —Yi, t 2= 1.
p

So Eq. (17) has a compact solution (non-constant bounded solution, respectively) if

1
— = 0 (< 00, respectively). This completes our proof. O

i—o i

Corollary 30. The Q-process is recurrent iff E % = 00.
i
i=1

i1
Proof. a) By L 29, the Q- i tiff [ ———— = 0. Noti
roof. a) By Lemma e Q-process is recurrent i gz+1+ai otice
H—. d =0 (=) Y .
1+ 1+ o )

i=1

Corollary 30 follows immediately.
b) There is also an alternative proof. By [6, Example 8.2] and using notations
there, we have

i—1
FO=1, FO= 2T (1+ = >1
R RSV AN

where we take the convention that H = 1.
%)
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When Z % = 00, we have

(%) 00 i—1 0o
(0) Q; Qy Q5 o
;F’ >;z+1Hl(H£+1)/Zz+1_OO’

and the Q- process is recurrent by [4, Theorem 4.52].
Wh %i h
en Z — < 00, we have

=1

o) 00 i—1 00
Ejﬁp)<§:ii111(1+ff1)gc%;;iil<oo

1=1 i=1 /=1

Again by [4, Theorem 4.52], the ()-process is transient.

. . . Q;
In conclusion, the Q-process is recurrent iff E — = 00. [
1
i=1

2.2 Ergodic Properties in the Case: lim a; =0

11— 00

Lemma 31. The Q-process is non-exponentially ergodic if lim a; = 0.
1— 00

Proof. First, we deal with a special case: {a;};-, is monotonically decreasing. For
a fixed n > 1, we set

1
—, 1<1<n,
(n) _ 07}
Y, = 1
—, 12>2n+1.
Qn

It is straightforward to check that (™ = <yi(n)> satisfies
i>1

(i+1+a)y™ <@+1D)y"+1,  i>1

So {y(”)}:le is a sequence satisfying all conditions of Theorem 16. The @)-process
is non-strongly ergodic.

Now if the @-process is exponentially ergodic, by Theorem 10, the follow-
ing Eq. (18) has a finite non-negative solution (w;),., for some A € (0, 1).

1+1 1
=" 7 _— > 1. 18
* z+1+o¢i—)\x+1+2+1+ai—/\ ’ (18)
Equivalently,
’L'+1—|—Oéi—)\ 1
] = —————— T — - , > 1
it i+1 T !
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Because lim o; = 0, 2,41 < x; for sufficiently large i. So (;),5, is bounded. Con-
1—00 =

sequently, (% (Eie’\"o — 1)) is bounded since it is the minimal non-negative
i>1
solution to Eq. (18). Hence (]Eie)“’o)i>1 is bounded and so is (E;00);5,- The Q-
process is thus strongly ergodic. This is impossible. The @)-process is therefore
non-exponentially ergodic.
In general case where {«;};~, may not be monotonically decreasing, we define
conservative Q = (Gij):

1+ 1, 120, j=i+1,
_ S -
Gi; = skg}i)ak, 1>1, =0,
0, other i # j

Because

lim sup o, = lim o; = lim a; = 0,

1— 00 k}l 1—00 1—r 00
the @—process is non-exponentially ergodic according to above discussions. Conse-
quently, the Q-process is non-exponentially ergodic by comparison. Our proof is
completed. m

The above proof is based on Theorem 16, we may give a more direct proof
using Theorem 18.

Alternative Proof of Lemma 31. Without loss of generality, we assume lim| a; = 0.
1—00

First, we set
1
A = , n > 1.
n+1

And for each fixed positive integer n, by Theorem 18, we consider
m o1 m
Yoo STV TN
(n) 1+ 1 (n) 1
L IIE IS W LI TIPS

1> 1.

Introducing a change of variable dl(-") = yfz)l — yi(n) (i = 0), the above inequality is

transformed into

di” = A -1,
(n) o 1 oyt 51
7 = Z+ 1 (Oél n) yz Z+ 17 Lz



Put y(()”) =n. As lim| a; = 0, there exists M; such that

i—00
a; = Ay, I<e< M -1,
a; < A, 1= M.
If we place
dy" =0,
R R P VY
’ i+1 7
then

Furthermore, we may pick My > M; such that

" 1 1
3/1(\43 M1 —E/O,
y(an—M11+1_"'_ML2—M21+1<O
And we put
m_ 1 M, <k<My—1
k R 1S kS My )
dii) =~y

d™ =0,  k>M+1.

Thus 3\ = 0 (k > M,).
Now, one may check that {\,} ~, coupled with {y(”)}zo:l are sequences satis-
fying conditions in Theorem 18. The @-process is non-exponentially ergodic. [

Lemma 32. Suppose the QQ-process is recurrent and set

S 1
" T e )

i=1 l+1

Then

(1) the Q-process is ergodic if

i—1
. o )
T < oo and ili\r?oai!‘_[l(l—i_g"_l) > 0;
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(2) the Q-process is non-ergodic if T = 0o.
Proof. a) Note that
i—1 1

o3 A ORETRRY
k=l (B4 1) [, <1 + >

sup - < 5 + C,
i>1 i1 ¢ . i—1 ¢
. f=1(1w+1) oo O f=1(1+£+—1)

we have

( i
Zk 0 < d;  Eq (1) Zk:l Qk k+1

d=sup 5Ty S Sf F ‘32? FO

20 ZZ oF (0)

Qa; i—1 Qy 1
E 1 -
k1k+1z+1 hM1('+£+1) i+ 1

a Szglf Q; Hi—l (1 i Oy )
i+ 12 (41
i—1 1 1
< sup +sup ;
T eI (Heofl) s ( 12+1>

where the equality in the second line is by the explicit expression of E-(k) in [6, Exam-

ple 8.2]. Hence d < oo under condition (1). The Q-process is ergodic by Theorem 26.
b) Under condition (2), using the O’Stolz theorem and the explicit expression
of Ffm in [6, Example 8.2], we have

ZZ:O dk > lim Z’]LCZO dk =i dl

d = sup = > li . = lim
. i 0 ; i 0 ; 0
20 ) heo IS > k=0 R
)
Z:l i1 1
o e,
Z S, (1 2
=1 (+1
> 1
= = 0
k=1 k Qg
k+1 1
( + )HZ:I ( + g + 1>
The @Q-process is therefore non-ergodic. O
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1 .

Corollary 33. Let o; =

(1) the Q-process is ergodic for vy € (0,1);

(2) the Q-process is null recurrent for v = 1.

Proof. a) When v € (0, 1), we set y; = log?" i (i > 3). Then for sufficiently large 1,
(i+14a)y; =i+ 1)y + 1.

In fact, for large i, by Lagrange mean value theorem,

I+ 1
(i+1) (log* (i + 1) — log* i) < 27“7 log? ' (i +1) < log”i — 1.
7

Thus, the Q-process is ergodic for v € (0,1) by Theorem 11.
b) When v = 1, by [4, Theorem 4.37], we need only prove every non-trivial
non-negative solution to the following Eq. (19) is not summable.

Zmiqij =0, J=0. (19)
120
In fact, Eq. (19) gives
4+ 1
Tig1 = .L-Ti, 12> 0.
1+ 2+ aip
Therefore,
- . . . 9 (4 = .
Tii1 i+1 (i+1)log(i+1)
Direct computation shows
T ) 1 1 1
lig Zitl 1 ilogi 1logiloglogi
1logiloglogi

i—00 ((z+ Dlog(i+1) ilogi

(i+1)log(i+1)—ilogi
=— lim —— : - 11ogiloglogi
i—oo 1 (14 1)logilog (i +1)

(i+1)log(i+1) —ilogi

S log log .
S (i+Dlog(it1) 88!

1 1
= lim — ) 1logiloglogi
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Since
(i+1)log(i+1) —ilogi
(t+1)log(i+1)
1+log(i+1)
S+ 1)log(i+1)

0<

loglog

loglogi — 0, as ¢ — 00,

we conclude that (z;),., is not summable by Kummer’s test. The Q-process is thus
non-ergodic. By Corollary 30, the ()-process is recurrent. Hence the (-process is
null recurrent when v = 1.

c¢) There is a direct proof using Lemma 32. In fact, Kummer’s test shows that
T < oo for v € (0,1) and T = oo for v = 1, respectively. Besides, for v € (0,1), we
have

s

: (093 1 1
i 1 = . 1
ali[l( +k:—|—1> log“’zH( +(k:—|—1)10g7(/<:+1))

k= k=1
1 " 1 1 |
> : > C : d
log'yzeXp{kz:;Q(k+1)log(k+1)} log'yzeXp{/g rlogx m}
1
=C logi = Clog'™ i — 00, as s — oo.

log” i

Now, Corollary 33 follows immediately from Corollary 30 and Lemma 32. [J

2.3 Ergodic Properties in the Case: lim o; > 0
1—00

We begin with the following result for general Q-matrix.

Lemma 34. Let () be an irreducible reqular QQ-matrixz and assume the QQ-process is
recurrent. If 1£1f gio > 0, then the Q-process is strongly ergodic.

Proof. Take ¢ € (0, iglqu'o), then

450
10
11 1 ; 1 i1 1
Sxo4—c —(1—@)+—Zq3—+— i>1
c ¢ 4d; c 4i % = %cC G
i
So the Q-process is strongly ergodic by Theorem 14. O

Lemma 35. Suppose {c;};o, has a subsequence {cy, },-, satisfying

. o
. k41 1
inf o;, > 0, sup 2 < oo, g — = 00.
k=1 k=1 Uk ey Uk

Then the Q-process is strongly ergodic.
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Proof. For ease of notation, we write ¢ = 0. Define conservative @ = (qij):

1+ 1, 1 =1, J = 1,41 for some k > 0,
1+ 1, I <t <ipyq for some k>0, 5 =i+ 1,
Gij = ~1 . .
% c=-infoy,, ©=1i;forsomek >1, 5 =0,
k>1
0, other @ # j.
It is easy to see that {iy},_, is an irreducible subclass of Q). Note that {in}iy is also
a recurrent subclass of the @—process since Z — = oo (This is easy to illustrate
U
k=1
using Lemma 29). Because
1 7 1 1 1

¢ ipt+l4c ¢ gl
{ix}rey is furthermore a strongly ergodic subclass according to Theorem 14. Since

L+l . .
sup —+ < oo implies

k=1 Uk
1 1 1 Uy1 — 1 — 1
igg(z'k+2+ik+3+m+ﬂ> gi?f%<oo’
exploiting B N
ESQ)JOZESE]_)UO+;7 b <1< igi1, k=0,
1+ 1
(@)

we have supE; " 0¢ < co. Construct an order-preserving conservative coupling -

i>0
matrix Q = (g (i,5;7,7")), whose marginalities are @ and @, with non-diagonal
entries

i

(i+)AN(G+1), =i+1,i>0,
J=Jj+1, i <j <igy for some k >0,
G+)AN@G+1), =i+1,i>0,

j =igy1, j =iy for some k > 0,

q(i, ;1 5) = ¢ (=57, '=i+1,i20, j=j>0,
c, i'=0,1>1, =0, j =1, for some k > 1,
a; — ¢, i'=0,1>1, jy=j =1 for some k > 1,
a;, i'=0,1>1, i <j =j <ipy for some k > 0,
L0, other (i, 5") # (i, J).

Denote the Q-process as (X (t),Y (t)),.o, then we easily deduce that

PO (XY @)=1, t>0i <ip.

(i1,i2)
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Hence,

sup EgQ)ao < sup EEQ)UD < 00,
i>1 i>1
and the Q-process is strongly ergodic. O

3 Brussel’s Model and Miscellaneous Examples

Brussel’s model (see [13]) is a typical model of reaction-diffusion process with
several species.

Example 36. Let S be a finite set, £ = (Zi)s and let py (u,v) be transition
probability on S, k =1,2. Denote by e,; € E the unit vector whose first component
at site u € S is equal to 1 and the second component at u as well as other components
at v # u all equal 0. Similarly, one can define e,o. The model is described by the
conservative Q-matriz Q) = (gi;):

(Aa(u), ify=ux+eu,
Aob (u) 1 (u) , ify =2x — ey + ey,
1 (u
/\3( 1 ( ))952(”)7 if Yy =12+ e — e,
q(z,y) = 2
A4$1 (U) ) ny =T — €41,
xy (u) pg (u,v), ify=a—eu+ e, k=12, v#u,
L0, other y # x,
and q(x) = —q(z,z) = Zq(a:,y), where © = ((z1 (u),z2(u)) :u€S) € E. a
y#x
and b are positive functions on S and Ai,--- , s are positive constants. Finite-

dimensional Brussel’s model is exponentially ergodic (cf. [25]). We now demonstrate
that it is non-strongly ergodic, which was actually proved for the first time in [12].
But here we adopt different methods.

Proof. We shall prove our assertion by two approaches. For ease of notation, we
write @ = Y _a(u), |z] =Y (21 (u) + 22 (u)) for 2 € E and E; = {z € E : |z| =i}

u€es uesS
for 7 > 0.

a) For each fixed n > 1, we construct function

F® (@)= f",  zeE, i>1,

with

1 , :

—log(i+1), 1<i<n,

fgn): A4

! 1
—log(n+1), i>=>n+1

A
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Because

we have
- 1 Aa
(A1a+)\4€))\—10g(k+1) < Tlog(k+1)+€logk+1, 1< <k,
4 4
~ 1 Aa
(N + Mf) 1 log (k +1) < Aﬂlog(mz)wlogkﬂ, 1< <k
4 4

Now it is straightforward to check that

()\16 MY (u)) FP<NGE M@ (u) £+ 1

u€eS u€esS
I'GE“ 221, n}l,

where we naturally put fén) =0(n=>1).

It can be easily seen that F'") (z) satisfies Eq. (7) in current setup and { F") }Zozl
is a sequence satisfying conditions in Theorem 16. Consequently, we infer that finite-
dimensional Brussel’s model is non-strongly ergodic.

b) We try invoking Theorem 16 yet with a different testing sequence. For each
fixed n > 1, we construct function

k
FO ()= "d",  ze€B, k>1,

with
( 1
) <
)\4(2“‘1), \Z\n7
1
=0 -~  i=ntl,
! )\1&(7’L—|—1) ! ne
1
S > 2
\ )\1& 1=2n+

And a trivial calculation shows that {F (”)}zozl is a sequence satisfying con-
ditions in Theorem 16. So finite-dimensional Brussel’s model is non-strongly er-
godic. [
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Example 37. Let E = Z2. Epidemic process is defined by Q-matrix
Q = (¢((m,n), (m',n')) : (m,n), (m',n') € E) with

(«, if (m/,n’) = (m+1,n),
ym, if (m',n') = (m —1,n),
ro 67 Zf (mlvn/) - <m7n + 1)>
Q((mvn)v(mvn)): . Iy
on, if (m',n')=(m,n—1),
emn, if (m',)n')=(m—1,n+1),
L0, otherwise, unless (m’,n’) = (m,n),
andq((m,n)) = —q((m,n), (m,n)) = Z q((m,n),(m',n)), wherea,~, 3,6,
(m/,n")#(m,n)

and £ are non-negative constants. We assume v > 0 and 6 > 0. The Q-process
is unique and ergodic when o+ > 0 (cf. [1]). Epidemic process is non-strongly
ergodic if o+ B, 7, and § are strictly positive by [12]. Using similar argument as
in Example 36, we can also carry out this result and therefore give a new proof. We
will not reproduce the details here.

Example 38. Consider a conservative birth-death QQ-matriz with birth rate by = 1,
b; =1 (i 2 1) and death rate a; = i¥ (i > 1). It is known that this Q-matriz is
reqular for all v € R and the Q-process is recurrent. The process is ergodic iff v > 1
and strongly ergodic iff v > 2 (cf. [4]). We now use Theorem 16 to demonstrate that
the process is non-strongly ergodic if v < 2. Also, we use Theorem 15 to present
that the process is non-ergodic if v < 1.

Proof. a) First we prove the process is non-strongly ergodic if v < 2 using Theo-
rem 16. For each fixed n > 1, define

k
=AY k>,
i=1
with
1
-, 1<i<n,
d(n) _ ,L'lJr;
b 1 > 1
s tz2n+1.

When v < 2, we have the following estimates:

1 1 1
r— - (20a)

1 1 1
— < -, i1>n—+1. (20b)

1 1
it () e 0

48



In fact, Eq. (20a) holds obviously for i = 1,2. Put

N \x) = ) x > 0.
(@) 21t
Differentiating g;, we obtain
1 1 —logx 1 1
/ _ .
’gl(x”_;p%i(l—i_T)ngg’ if z >e.

By Lagrange mean value theorem, Eq. (20a) holds.
1
We turn to Eq. (20b). Denote ¢ = o then we have
n

1 1 i+ 1D =it (I+e)(i+1)
1+e - 1+e = -1 . 1+e < -1 . 14+
[ (1+1) e (i+1) i*e(i 4+ 1)
1+e¢ 1 e
= = —(1+4¢ ,
itte (i +1) 2'2( * )i—l—l
where “<” is obtained by mean value theorem.
Define .
= (1 _ > 0.
B0 =(+e)"— @

By calculus method, we see that go is decreasing on the interval [n + 1,00). And
one can verify easily that g, (n + 1) < 1. Therefore

Z'l—a

) = (1 <1, >+ 1.
g2 () <+€)z'+1 1=>n+

And Eq. (20b) follows.
By Eq. (20), <yi(") > satisfies Eq. (7) in current setup:
i>1

1z

¢><¢g+5, i>1. (21)

and {y(”)}zozl is a sequence satisfying all conditions in Theorem 16. Consequently,
we conclude that the @QQ-process is non-strongly ergodic if v < 2.

b) We use Theorem 16 to deduce non-strong ergodicity yet with a different
testing sequence. Define

1
1<i<n,
(i+9)log(i+9) s
d" = i—1
— - =N .
(n+9)log(n+9) k%’
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Because

il >/001d 1> = >1
— —dz =~ n>1,
k2~ ), a2 n~ (n+9)log(n+9)

k=n
! _ ! <l iz
(i+9)log(i+9) (i+10)log (i + 10) ~ 42’ -
k
it is straightforward to verify that {y(”)}zo:l, with 3" = ngn) (k>1), is a se-
i=1

quence satisfying conditions in Theorem 16.
¢) We now turn to non-ergodicity. For each n > 1, we set

y(()n):n+1’ ygn)zzdlin)’ P>,
k=1

k—1
n 1 n .
where d; - - (k=1), Z = 0. Hence for each n > 1, (yz( )>' satisfies
=/ > 20
w” <y 1
) o m) L :
di <di+1+ma 12> 1,

which is exactly Eq. (6) in current setup. And {y(”)}oo_l, with y™ = <y§")> , 1s
n= i>0

a sequence for Theorem 15, therefore the Q)-process is non-ergodic for v < 1. O

We further investigate a multi-dimensional version of Example 38.

Example 39. Let S be a finite set, E = (Z+)S and p (u,v) a transition probability
matriz on S. We denote by 0 € E whose components are identically 0 and denote by
ey € E the unit vector whose component at site u € S is equal to 1 and other compo-
nents at v # u all equal 0. Define an irreducible Q-matriz Q = (¢ (z,y) : x,y € E)
as follows:

(x(u)”, ify=x+e, v #0,

1, ifx=10,y=e,,
q(z,y) = =), ify=1— e,

r(wp(uv), fy=z—e,te, v#u,

L 0, other y # x,

and q(x) = —q(z,x) = Zq(x,y), where x = (z(u) :u € S) € E. By [13, The-
y#x
orem 1|, it is easy to check that the Q-process is unique for all v € R. We now

prove
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(1) when v < 2, the Q-process is non-strongly ergodic;
(2) when v < 1, the Q-process is non-ergodic.

Proof. We will reduce multi-dimensional problem to 1-dimensional case. For ease of
notation, we write |z| = Zx (u) for x € Eand E; = {x € E : |z| =i} for : > 0.

uesS
a) Using Theorem 16, to prove that the @-process is non-strongly ergodic for

v < 2, we need only construct sequence {F (n)}:o:1 satisfying the conditions. We

may guess F( is identically fi(n) on F; for each 7 > 1, and set
i = [, AP = - (2 2),

And Eq. (7) now becomes

d§"><d§1>1+z o t€E, i>1
x(u
ues
Because
2
S ol < Xar < (Sat) = aem iz
u€esS u€eS u€esS
we need only construct sequence satisfying
() g 1 :
d; <di+l+z~_2a 121,

which is exactly Eq. (21) with v = 2. Now we can proceed our proof as in Exam-
ple 38. The Q-process is therefore non-strongly ergodic if v < 2.

b) To deal with non-ergodicity, according to the discussions in a) and using
similar notations, we need only consider equation

y0<y1+17

1
di < dipq + —, 1> 1.
(3

And we can proceed as in proof c¢) of Example 38. Hence the multi-dimensional
process is non-ergodic for v < 1. ]
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AL AAEFITHARER GBI T T ARG ALt L4924 2] A4
fRk, AZVIMET KEWAE . EMREFAAGIAEY, REIFLTREFS ARG
I, ARTARBER., BRFIUZ R, RIS T IAE. #8560 TAEER
BNERENF ] EREBI BN, REFFCLRFT HFERERALEIE,
ERIKEZR L. RANSKRMAGEITF), KREFTRE T+, clbabhEIikt
T8 0 Bt o

R K AR AL AR EHIT, FEBPAGTAEATRE— A E, RASE
Jv9 Lo a9t 8 A A B AL, KE AL I E TS0 L4 T 8%
PR A S AP IL R AW AT AR, M YE R E, FiR L, KkEIMATEA TR G
PEBT A AT R TR T RAR KO B Ko Bt ERTHIZ, AEBAW T FifwyE L
095 RO EDGER T TAE, KT B To Bt L FHRIN KK, THE S HILABL
HBEHAGEF D] Eho A E LA R FE S FH )

Rt TAM IR, B30 P #Hig . RIS A R0 BN Ak 0T, 467 Bt
JE) S JB) % )T Ae G SR 0T, SN T S A a9 BB AR, 18T KRS FR R AT
BRI 69 5B A 7T Ao

R 25 3T AT Bh AR S B 69 T LT HAT, RAVA BAR &R 354, A &, F %,
RABA . Tk, Ry, RHFF. FHB. EWAF. 2HMHR TR, ZLHEHA KD
BRAREL., A, GiEy, 7484, TRA#. L4, £4 1, R, HFEE,
MEE, REHE, AR, T4, AT, NERIHRAERFOFY, EFELE
KEBR G ETEFTREFZONE, KMN—FBFRPALF L6 8 FIEFIIC, &
WERAZ®R. ZM, EAHFTEFE, FENROREABRAEF—ARAXRRZ TN
W7 'E o

B ANRA—AARS RELKG 0 L.

XBRFLEELNEEARZERARMAFELME “(EM) AR LR EE
7 Key (MBMEFT: 11771046), 4FBORP M E.

RE, RFFRALGREZFHEROFLEAIFREEZREL,
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