
Sharp Bounds on Eigenvalues via Spectral
Embedding Based on Signless Laplacians∗

Zhi-Feng Wei†

Department of Mathematics, Indiana University,
831 E. 3rd St., Bloomington, IN 47405-7106, United States

Abstract
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1 Introduction
Spectral embedding is a popular tool in modern data clustering, as summarized in [von

Luxburg, 2007]. Also, spectral embedding was exploited to study graphs. In particular,
[Lyons and Oveis Gharan, 2017 (henceforth cited as LOG17)] introduced spectral embedding
as a new tool in analyzing reversible Markov chains (random walks on graphs). For instance,
[LOG17, Theorem 4.9] gave a sharp bound on return probabilities of lazy random walk. Here,
the lazy random walk on a graph G stays put at a vertex with probability 1/2 and moves to
a random uniform neighbor otherwise.

Theorem 1.1 (LOG17, Theorem 4.9). Let G be a regular, simple, connected graph with n
vertices. For each vertex x of G and t > 0,

0 ⩽ p′t(x, x)−
1

n
⩽ 13√

t
,

where p′t(x, x) is the probability of returning to x at step t for the lazy random walk on G
starting from x.

Now, a question arises naturally: if simple random walk, instead of lazy random walk, is
considered, do we still have good bounds on return probabilities? Here, the simple random
walk on a graph moves to a random neighbor uniformly.

To get some feeling, we recall the method used in the proof of the above bound in
[LOG17]. Given a graph G, let P be the transition matrix of the simple random walk on
G; then P ′ := I+P

2
is the transition matrix of the lazy random walk on G. We know that P

and P ′ are symmetric operators on the space of functions on V (G) square summable with
respect to the degree sequence of G, so their spectra are both real. Denoting the spectra
of P and P ′ as σ(P ) and σ(P ′) respectively, we know that σ(P ′) is closely related to σ(P ):
λ ∈ σ(P ) if and only if 1+λ

2
∈ σ(P ′). Since σ(P ) is contained in the interval [−1, 1], σ(P ′) is

contained in [0, 1]. Also, it is well known that the non-trivial (different from 1) spectrum of
P ′ “governs” the “convergence rate” of lazy random walk: for instance, if the gap between
the largest non-trivial eigenvalue of P ′ and 1 is large, then intuitively, the convergence will be
faster. Thus, by the relation of σ(P ) and σ(P ′), we only need to consider the spectrum of P
near 1. Moreover, we notice that σ(P ) is closely related to the spectrum of the probabilistic
Laplacian L := I − P corresponding to P . To prove the aforementioned bound in [LOG17],
using the spectral embedding based on L, [LOG17] first revealed upper bounds on the vertex
spectral measure of L. It is known that return probabilities are determined by vertex spectral
measures; therefore, bounds on return probabilities can be obtained from bounds on vertex
spectral measures (see [LOG17, Proposition 3.5]).

When it comes to simple random walk, the situation is different. Note that simple random
walks on bipartite graphs have period two and simple random walks on non-bipartite graphs
are aperiodic. For simplicity of presentation, we discuss non-bipartite case only in this
introduction. To begin, we still have the intuition that the “convergence rate” of simple
random walk is related to the non-trivial spectrum of P : for instance, [Diaconis and Stroock,
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1991, Proposition 3] proved that the geometric convergence rate in total variation norm
is determined by the maximum non-trivial eigenvalue in absolute value when the random
walk has finitely many states. Note that σ(P ) ⊆ [−1, 1], but σ(P ) is not necessarily non-
negative. Therefore, in order to deal with “convergence” of simple random walk, one also
has to consider the negative spectrum of P . However, we usually study the spectral gap of
the probabilistic Laplacian L = I−P , which is related to the spectrum of P near 1 but does
not provide much information about the negative spectrum of P .

Our solution is to consider another operator: the probabilistic signless Laplacian operator
Q := I + P . Obviously, the spectrum of P is closely related to the spectrum of Q by a shift
of 1 unit horizontally. The spectrum of Q is therefore real and non-negative. This brings us
some convenience: we have more tools to deal with the operator Q, its associated quadratic
form for a start. We will first consider the vertex spectral measure of Q using the spectral
embedding based on Q, so the negative spectrum of P is bounded. Then we may proceed
to get a bound on return probabilities of simple random walk. See Theorem 3.5 for details.

1.1 Main Results
To give an overview of our results, in this subsection, we constrain ourselves to the case

of unweighted graphs. Some notation will be needed, which will be explained in more detail
in subsequent sections. Consider a locally finite, simple, connected graph G = (V,E). A
vertex x ∈ V has degree d(x) in G. Write π(x) := d(x)

2|E| , which is 0 when G is an infinite
graph. When G is finite, we denote the eigenvalues of the transition matrix P on G as

−1 ⩽ λPmin = λP1 ⩽ λP2 ⩽ λP3 ⩽ · · · ⩽ λPn−1 < λPn = λPmax = 1,

where n = |V |. When G is finite, it is well known that λP1 = −1 if and only if G is bipartite.
However, for infinite graphs, it is more appropriate to consider their vertex spectral measures.
For instance, denoting the probability of returning to x at step t as pt(x, x) for the simple
random walk on G starting at x, then we have

pt(x, x) =

∫
[0,2]

(1− λ)tdµx(λ),

where µx is the vertex spectral measure at x of L. Denote the vertex spectral measure at x
of Q as µQ

x . It is shown in Lemma 3.3 that when G is finite,∑
x∈V

µQ
x (δ) =

∣∣{j ; 1 + λPj ⩽ δ}
∣∣.

This enables us to count eigenvalues of P on the interval [−1,−1+ δ]. Therefore, we can get
lower bounds on eigenvalues of P from upper bounds of the vertex spectral measure of Q.

We first consider non-bipartite graphs. In fact, when the graph is non-bipartite, the
simple random walk is aperiodic, so some troubles are avoided. Our result for simple random
walk on regular graphs reads as follows.
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Theorem 1.2. For a regular, non-bipartite, simple, connected graph G, we have

µQ
x (δ) ⩽ 10

√
δ, 0 ⩽ δ ⩽ 2, x ∈ V.

For each x ∈ V , simple random walk on G satisfies

0 ⩽ pt(x, x)− π(x) ⩽
18√
t

for t ≡ 0 mod 2,∣∣pt(x, x)− π(x)∣∣ ⩽ 9√
t

for t ≡ 1 mod 2.

Furthermore, when G is finite, for 1 ⩽ k ⩽ n, λPk ⩾ −1 + k2

100n2 .

The above result is sharp by Example 3.7. Theorem 1.2 is interesting since the degree
and size of the regular graph G are not involved. In Theorem 1.2, the first assertion about
bounding vertex spectral measure follows from Theorem 3.1 in the subsequent text; the
second assertion about return probability bound follows from Theorem 3.5; and the last
assertion is treated in Corollary 3.4.

It would be helpful to briefly describe the mechanism of getting return probability bounds
in this paper, in which Lemmas 2.6 and 2.7 play essential roles. In fact, Lemmas 2.6 and 2.7
reveal how the asymptotics of large-time return probabilities corresponds to the asympotitics
of the spectral measures of L and Q near 0. For instance, when proving Theorem 3.5, we first
obtain a bound on vertex spectral measures of Q in Theorem 3.1, which in fact characterizes
the spectrum of P around −1; The first assertion of [LOG17, Theorem 4.9], as a counterpart
of Theorem 3.1, characterizes the spectrum of P around 1; based on Theorem 3.1 and the
first assertion of [LOG17, Theorem 4.9], Lemmas 2.6 and 2.7 will conveniently produce a
bound on return probabilities. Here, Lemmas 2.6 and 2.7 show how return probabilities
of simple random walk are determined by the spectrum of P around 1 and −1. In fact,
Lemma 2.7 is an extension of [LOG17, Lemma 3.5]: intuitively, [LOG17, Lemma 3.5] reveals
how return probabilities of lazy random walk are determined by the spectrum of P around
1.

The following proposition is for graphs satisfying volume growth conditions.

Proposition 1.3. Let G be a non-bipartite, infinite, simple, connected graph. Suppose that
for some vertex x of G, there are constants c > 0 and D ⩾ 1 such that∑

y ; dist(x,y)⩽r

d(y) ⩾ c(r + 1)D

for all r ⩾ 0, where dist is the distance on graph. Then for all δ ∈ (0, 2),

µ∗
x(δ) ⩽ Cd(x)δD/(D+1),

µQ
x (δ) ⩽ Cd(x)δD/(D+1),

where
C :=

(D + 1)2

c1/(D+1)D2D/(D+1)
.
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Hence for all t ⩾ 1, simple random walk satisfies

pt(x, x) ⩽ 2C ′w(x)t−D/(D+1) for t ≡ 0 mod 2,

pt(x, x) ⩽ C ′w(x)t−D/(D+1) for t ≡ 1 mod 2,

where
C ′ :=

D + 1

c1/(D+1)D(D−1)/(D+1)
Γ
( D

D + 1

)
.

Proposition 1.3 follows from Corollary 4.3 directly.
Using the spectral embedding based on Q, we also bound the vertex spectral measure of

Q in another way and get bounds on the uniform mixing time.
Proposition 1.4. For any non-bipartite, finite, simple, connected graph G, we have

µQ
x (δ) ⩽

d(x)δ

K (G)
, δ ∈ [0, 2), x ∈ V,

where K (G) is defined as

min
{∑

(v,u)∈E|f(v) + f(u)|2

maxy∈V |f(y)|2
; min

y∈V
f(y) < 0 < max

y∈V
f(y)

}
and satisfies K (G) ⩾ 1

diam(G)+1
. Consequently, for 1 ⩽ k ⩽ n,

λPk ⩾ −1 + kK (G)∑
x∈V d(x)

⩾ −1 + k(
diam(G) + 1

)∑
x∈V d(x)

.

Furthermore, τ∞(1/4) ⩽ 8n3. If G is also regular, then we have τ∞(1/4) ⩽ 24n2.
Proposition 1.4 follows from Lemmas 5.2 and 5.3, and Corollaries 5.4 and 5.6.
Note that for a finite, simple, connected graph G, [LOG17, Proposition 4.2] implies

λPn−k ⩽ 1− k

Rdiam(G)
∑

x∈V d(x)
, 0 ⩽ k ⩽ n− 1,

where Rdiam(G) is the resistance diameter of G. This bound combined with the lower bound
on eigenvalues of P in Proposition 1.4 improves [Landau and Odlyzko, 1981], which asserted
that each eigenvalue λ of P that is neither 1 nor −1 satisfies

|λ| ⩽ 1− 1(
diam(G) + 1

)
ndmax

,

where dmax is the maximum degree of G.
The bound τ∞(1/4) = O(n2) in Proposition 1.4 is sharp by the example of cycles: there is

a constant c > 0 such that for all odd number n, simple random walk on an n-cycle satisfies
τ∞(1/4) ⩾ cn2 (see [Tetali and Montenegro, 2005, Example 3.11]). See Section 5 for more
details.

As a special class of regular graphs, vertex-transitive graphs are of interest, since they
are intuitively “homogeneous” and especially well studied.
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Theorem 1.5. Let G be a non-bipartite, simple, connected, vertex-transitive graph with
degree d <∞. For each x ∈ V , c ∈ (0, 1), and δ ∈ (0, 2], we have

µQ
x (δ) ⩽

1

c2N#
(√

1−c√
dδ

) ,
where N#(r) denotes the number of vertices in a ball of radius r. In addition, if G is finite,

λQmin ⩾ 2

d

(
sin π

4
(
diam(G) + 1

))2

.

Theorem 1.5 follows from Theorems 6.2 and 6.4 directly. As usual, a bound on return
probabilities of simple random walk follows immediately from a bound on vertex spectral
measures. See Corollary 6.3 as an example.

Apart from vertex spectral measure at one single vertex, we may consider average spectral
measure for finite graphs. Given a finite graph G, the average spectral measure ofQ is defined
as µQ :=

∑
x∈V µ

Q
x /n.

Theorem 1.6. For any non-bipartite, finite, simple, connected graph G and δ ∈ (0, 2), we
have

µQ(δ) < (4000δ)1/3.

Consequently, λPk ⩾ −1 + k3

4000n3 for 1 ⩽ k ⩽ n. Furthermore,

0 ⩽
∑

x∈V pt(x, x)− 1

n
⩽ 30

t1/3
for t ≡ 0 mod 2,∣∣∑

x∈V pt(x, x)− 1
∣∣

n
⩽ 15

t1/3
for t ≡ 1 mod 2.

Theorem 1.6 is treated in Section 7; see Theorems 7.1, 7.5 and 7.6, and Corollary 7.2 for
more details.

Non-bipartite graphs are considered in previous paragraphs. But the bipartite case is a bit
different, because simple random walk on a bipartite graph has period two. Fortunately, by
[Mohar and Woess, 1989, Theorem 4.8], the vertex spectral measures of L and Q coincide.
Therefore, only the estimates for the vertex spectral measure of L from [LOG17] will be
enough for us to get bounds on return probabilities of simple random walk. For example, we
have the following result for bipartite graphs.

Theorem 1.7. Consider simple random walk on a regular, bipartite, simple, connected graph
G. Then for each x ∈ V ,

0 ⩽ pt(x, x)− 2π(x) ⩽ 18√
t

for t ≡ 0 mod 2.
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This result is later proved as Theorem 8.1 in Section 8.
Our method works as well for analyzing the spectrum of the adjacency matrix A of a

finite graph G. Suppose the eigenvalues of A are

−dmax ⩽ λAmin = λA1 ⩽ λA2 ⩽ λA3 ⩽ · · · ⩽ λAn−1 < λAn = λAmax ⩽ dmax,

where dmax is the maximum degree of G.

Proposition 1.8. Let G be a non-bipartite, finite, simple, connected graph. For 1 ⩽ k ⩽ n,

dmax + λAk ⩾ kK (G)

n
⩾ k(

diam(G) + 1
)
n
.

Proposition 1.8 follows from Corollary 9.7 directly. Proposition 1.8 improves [Alon and
Sudakov, 2000, Theorem 1.1], which obtained that dmax + λA1 ⩾ 1

(diam(G)+1)n
. To get Propos-

ition 1.8, in Section 9, we first consider the spectral embedding based on the combinatorial
signless Laplacian Θ := D + A, where D is the diagonal degree matrix of G. Then Proposi-
tion 1.8 follows from the bound below on the vertex spectral measure of Θ.

Proposition 1.9. Let G be a non-bipartite, finite, simple, connected graph. Then for each
δ ∈ [0, λΘmax) and x ∈ V , we have

µΘ
x (δ) ⩽

δ

K (G)
⩽

(
diam(G) + 1

)
δ.

This proposition follows from Proposition 9.4 directly. Suppose the eigenvalues of Θ are

0 ⩽ λΘmin = λΘ1 ⩽ λΘ2 ⩽ λΘ3 ⩽ · · · ⩽ λΘn−1 < λΘn .

The above proposition has the following corollary.

Corollary 1.10. Let G be a non-bipartite, finite, simple, connected graph . For 1 ⩽ k ⩽ n,
we have

λΘk ⩾ kK (G)

n
⩾ k(

diam(G) + 1
)
n
.

Corollary 1.10 is proved as Corollary 9.6 in Section 9. In fact, it is known that a graph is
bipartite if and only if λΘmin = 0; for a non-bipartite graph G, [Desai and Rao, 1994] showed
that λΘmin measures non-bipartiteness of G.

1.2 Related Works
In the field of spectral graph theory, the combinatorial signless Laplacian has already

drawn wide attention: [Cvetković and Simić, 2009, 2010a,b] are surveys on the study of
the combinatorial signless Laplacian. In fact, [Alon and Sudakov, 2000, Theorem 1.1] also
used the combinatorial signless Laplacian implicitly by considering its associated quadratic
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form. We use the method of spectral embedding, so not only the minimum eigenvalue but
all eigenvalues of the graph adjacency matrices are bounded from below in Proposition 1.8.

One highlight of this article is the introduction of the probabilistic signless Laplacian
Q, enabling us to deal with the negative spectrum of the transition matrix P on a graph
with the tool of spectral embedding, and therefore deal with return probabilities. Indeed,
the quadratic form associated to Q was used in [Desai and Rao, 1993; Diaconis and Stroock,
1991] to give lower bounds on the minimum eigenvalue of P . Signless Laplacian operator is
also related to dual Cheeger inequalities; see [Liu, 2015; Trevisan, 2012] for more details. We
consider the operator Q explicitly and exploit the spectral embedding based on it. Therefore,
the entire spectrum of P is treated, rather than only the minimum eigenvalue. For instance,
[Landau and Odlyzko, 1981] is improved as we discussed after Proposition 1.4.

In the literature, there are many fewer results on the negative spectrum of P than on
the positive spectrum of P . Recall that in the study of the positive spectrum of P , the
probabilistic Laplacian operator L was usually used; in particular, the spectral gap of L
equals the gap between the largest nontrivial spectrum of P and 1. However, when one wants
to study the negative spectrum of P , for instance by considering the signless probabilistic
Laplacian operator Q, it is harder: since we don’t have many tools. For example, tools
from electrical network theory are pretty useful in the study of L, but they are not readily
available to deal with Q. We have to make a “detour” and adapt the existing tools.

1.3 Structure of this Article
We review notation for graphs and introduce spectral embedding based on the signless

Laplacian in Sections 2.1 and 2.2. Some preliminaries are included in Section 2.3. Return
probabilities of simple random walk on regular graphs are considered in Section 3. Return
probability bounds based on volume growth conditions are discussed in Section 4. The case
of transitive graphs is treated in Section 6. We also consider average return probabilities for
finite graphs in Section 7. In Section 5, we bound the uniform mixing time. Bipartite graphs
are discussed in Section 8. The tool of spectral embedding is exploited to study eigenvalues
of graph adjacency matrices in Section 9. The appendices contain some calculations and
auxiliary results.

2 Notation and Spectral Embedding

2.1 Graph Notation, Random Walk, and Laplacian Operators
Let G =

(
V (G), E(G)

)
be a finite or infinite, undirected, simple, connected, weighted

graph. For an edge of G, say e = (x, y) ∈ E(G), let w(e) = w(x, y) > 0 be its weight. We say
G is unweighted if w(e) = 1 for each edge e ∈ E(G). We assume G has weighted adjacency
matrix A(G), (unweighted) diameter diam(G), and (weighted) resistance diameter Rdiam(G).
Also, minimum, maximum, and average degrees in G are denoted by dmin(G), dmax(G), and
davg(G), respectively. When G is finite, we denote

∣∣V (G)
∣∣ = n(G). If G is understood,
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reference to G may be omitted.
For x ∈ V (G), we use standard graph notation N(x) :=

{
y ∈ V (G) ; (x, y) ∈ E(G)

}
to

denote the collection of all neighbors of x. Throughout this article, we require thatG is locally
finite, i.e.,

∑
y∈N(x)w(x, y) < ∞ for each x ∈ V (G). We say that w(x) :=

∑
y∈N(x)w(x, y)

is the weight of x ∈ V (G) in G, and the weight of a vertex subset S ⊆ V (G) in G is
wt(S;G) :=

∑
x∈S w(x). If G is unweighted, w(x) equals the degree d(x) of x. Again, when

G is understood, the reference to G may be omitted. In particular, when G is vertex-
transitive, all vertices have the same weight, denoted by w. Write π(x) = w(x)

wt(V (G))
. For a

vertex x ∈ V (G) and r ⩾ 0, let

B(x, r;G) =
{
y ∈ V (G) ; dist(x, y) ⩽ r},

where dist is the distance on G. Set

wt(x, r;G) := wt
(
B(x, r;G);G

)
.

For the simple random walk on G, the transition probability from x ∈ V (G) to y ∈ V (G)

is w(x,y)
w(x)

. We use pt(x, y) to denote the probability that the simple random walk started at
x ∈ V (G) arrives at y ∈ V (G) at step t.

Recall that we write ℓ2(V (G), w) for the (real or complex) Hilbert space of functions
f : V (G)→ R or C with inner product

〈f, g〉w :=
∑

x∈V (G)

w(x)f(x)g(x)

and squared norm ‖f‖2w := 〈f, f〉w. We reserve 〈·, ·〉 and ‖ · ‖ for the standard inner product
and norm on Rk (k ∈ N) and ℓ2

(
V (G)

)
. For a vertex x ∈ V (G), we use 1x to denote the

indicator vector of x:

1x(y) :=

{
1 if y = x,
0 otherwise.

We also write ex := 1x√
w(x)

. Note that ex ∈ ℓ2(V (G), w) is of unit norm: ‖ex‖w = 1.
We have a series of useful operators on ℓ2(V (G), w). The probability transition operator

P : ℓ2(V (G), w)→ ℓ2(V (G), w) is defined as

(Pf)(x) :=
∑

y∈V (G)

w(x, y)

w(x)
f(y).

We define the probabilistic Laplacian L = I − P and the probabilistic signless Laplacian
Q = I + P , where I is the identity operator on ℓ2(V (G), w). We know that P , L, and
Q are bounded self-adjoint operators on Hilbert space ℓ2(V (G), w). The spectrum of P is
contained in the interval [−1, 1]. Obviously, whether G is finite or infinite, the spectrum of
P and Q are related by a shift of 1 unit horizontally.
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Denote the resolution of identity for L as IL. As in [LOG17], the vertex spectral measure
of L at x ∈ V (G) is defined by

µx(δ) :=
〈
IL
(
[0, δ]

)
ex, ex

〉
w
=

〈
IL
(
[0, δ]

)
1x,1x

〉
, 0 ⩽ δ ⩽ 2.

For convenience, we will also use

µ∗
x(δ) :=

〈
IL
(
(0, δ]

)
ex, ex

〉
w
=

〈
IL
(
(0, δ]

)
1x,1x

〉
, 0 ⩽ δ ⩽ 2, x ∈ V (G).

It is easy to see that µx(δ) = µ∗
x(δ) + π(x) for 0 ⩽ δ ⩽ 2 (see [LOG17, Section 3.1]).

When G is finite, the spectra of P and Q consist of eigenvalues (point spectrum) only:

• Denote the eigenvalues of the transition matrix P on G as

−1 ⩽ λPmin = λP1 ⩽ λP2 ⩽ λP3 ⩽ · · · ⩽ λPn−1 < λPn = λPmax = 1.

• Denote the eigenvalues of the probabilistic signless Laplacian Q as

0 ⩽ λQmin = λQ1 ⩽ λQ2 ⩽ λQ3 ⩽ · · · ⩽ λQn−1 < λQn = λQmax = 2.

2.2 Spectral Embedding Based on the Signless Laplacian
The spectral embedding based on L is introduced in [LOG17, Section 3.4] as a powerful

tool in analyzing random walk on graphs. In this subsection, we will introduce the spectral
embedding based on Q in parallel. Denote the resolution of identity for Q as IQ, with vertex
spectral measure at x

µQ
x (δ) :=

〈
IQ(δ)ex, ex

〉
w
, 0 ⩽ δ ⩽ 2, x ∈ V (G),

where IQ(δ) := IQ
(
[0, δ]

)
.

Lemma 2.1. Let f ∈ ℓ2(V (G), w). We have

〈Qf, f〉w =
∑

(v,u)∈E(G)

w(v, u)
∣∣f(v) + f(u)

∣∣2.
For δ ∈ [0, 2] and f ∈ img

(
IQ(δ)

)
,

〈Qf, f〉w ⩽ δ‖f‖2w = δ
∑
v∈V

w(v)
∣∣f(v)∣∣2.

See the appendix for a proof.

Corollary 2.2. If G is connected and non-bipartite, then img
(
IQ({0})

)
contains only the

zero function. Therefore in this case, IQ(δ) = IQ
(
[0, δ]

)
= IQ

(
(0, δ]

)
. It also follows that 0

is not an eigenvalue of Q if G is non-bipartite.
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Proof. Assume f ∈ img
(
IQ({0})

)
. We see that∑

(v,u)∈E(G)

w(v, u)
∣∣f(v) + f(u)

∣∣2 = 〈Qf, f〉w ⩽ 0‖f‖2w = 0.

Therefore, for (v, u) ∈ E(G), we have f(v) = −f(u). Since G is non-bipartite, there is
an odd cycle C = v1v2 · · · vsv1, where s ≡ 1 mod 2. Thus, f(v1) = −f(v1), implying that
f(v1) = 0. By connectedness, f(v) = 0 for all v ∈ V (G). This corollary is proved.

For a fixed δ ∈ [0, 2], we define spectral embedding FQ based on Q as

FQ : V (G)→ ℓ2(V (G), w)

x 7→ FQ
x :=

IQ(δ)ex√
w(x)

=
IQ(δ)1x

w(x)
.

It is clear that for each x ∈ V (G), FQ
x ∈ ℓ2(V (G), w) is a real-valued function on V (G).

Lemma 2.3. For each finite or infinite graph G and x ∈ V (G),∥∥FQ
x

∥∥2

w
= FQ

x (x) =
µQ
x (δ)

w(x)
.

Lemma 2.4. If µQ
x (δ) > 0, define f : V (G)→ C as f := FQ

x

∥FQ
x ∥w

. Then

(1) ‖f‖w = 1;

(2) f(x) =
√
µQ
x (δ)/w(x);

(3) f ∈ img
(
IQ(δ)

)
.

We need only mimic the proofs of [LOG17, Lemmas 3.11 and 3.12] to prove Lemmas 2.3
and 2.4.

2.3 Some Preliminaries
We will use Lemma 2.5, a standard path fact, which was proved in [Levin and Peres,

2017, Proposition 10.16(b)] and [LOG17, Lemma 4.5]. Bounds on the diameter of regular
graphs go back to [Moon, 1965], but a different approach was used there.

Lemma 2.5. Let G be a finite, simple, connected graph. We have diam(G) ⩽ 3n
dmin
− 1.

The following two results will be useful when we are dealing with return probabilities in
subsequent sections.

Lemma 2.6. Let t be a positive integer and η be an increasing and right-continuous function
on [0, 2] with η(0) = 0. Then we have

t

∫ 2

0

η(λ)(1− λ)t−1 dλ = (−1)t+1η(2) +

∫
(0,2]

(1− λ)t dη(λ).
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Proof. Using integration by parts, we have

t

∫ 2

0

η(λ)(1− λ)t−1 dλ = −
∫ 2

0

η(λ) d(1− λ)t

= − η(λ)(1− λ)t
∣∣2
0
+

∫
(0,2]

(1− λ)t dη(λ)

= (−1)t+1η(2) +

∫
(0,2]

(1− λ)t dη(λ).

Lemma 2.7. Consider simple random walk on a non-bipartite, simple, connected, weighted
graph G.

(1) Let φ be an increasing and right-continuous function on [0, 2]. Assume further that φ
satisfies the following conditions:

φ(0) = 0 = µ∗
x(0), φ(2) = 1− π(x) = µ∗

x(2),

µ∗
x(λ) ⩽ φ(λ) for λ ∈ [0, 1),

µ∗
x(λ) ⩾ φ(λ) for λ ∈ [1, 2].

Then for t ≡ 0 mod 2,

π(x) ⩽ pt(x, x) ⩽ π(x) +

∫
(0,2]

(1− λ)t dφ(λ).

(2) Let ψ1 and ψ2 be increasing and right-continuous functions on [0, 2]. Assume further
that ψ1 and ψ2 satisfy the following conditions:

ψ1(0) = ψ2(0) = 0 = µ∗
x(0),

ψ1(2) = ψ2(2) = 1− π(x) = µ∗
x(2),

µ∗
x(λ) ⩽ ψ2(λ) for λ ∈ [0, 2],

µ∗
x(λ) ⩾ ψ1(λ) for λ ∈ [0, 2].

Then for t ≡ 1 mod 2, we have

π(x) +

∫
(0,2]

(1− λ)t dψ1(λ) ⩽ pt(x, x) ⩽ π(x) +

∫
(0,2]

(1− λ)t dψ2(λ).

Proof. a) This part is essentially a mimic of the proof of [LOG17, Lemma 3.5]. We consider
a non-negative integer t in this part. Since P = I − L, we have

pt(x, x) =
〈
(I − L)t1x,1x

〉
.

Symbolic calculus gives
(I − L)t =

∫
[0,2]

(1− λ)t IL(dλ).
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Therefore, by the definition of the vertex spectral measure of L, we have

pt(x, x) =

∫
[0,2]

(1− λ)t d
〈
IL(λ)1x,1x

〉
=

∫
[0,2]

(1− λ)t dµx(λ).

It follows that
pt(x, x) = π(x) +

∫
[0,2]

(1− λ)t dµ∗
x(λ). (1)

Furthermore, using integration by parts, we have

pt(x, x) = π(x) +

∫
[0,2]

(1− λ)t dµ∗
x(λ)

= π(x) + (1− λ)tµ∗
x(λ)

∣∣2
0
−
∫ 2

0

µ∗
x(λ) d(1− λ)t

= π(x) + (−1)tµ∗
x(2) + t

∫ 2

0

µ∗
x(λ)(1− λ)t−1 dλ.

b) When t ≡ 0 mod 2, because (1−λ)t is always non-negative, by Eq. (1), pt(x, x) ⩾ π(x).
On the other hand, by the result in part a),

pt(x, x) = π(x) +
(
1− π(x)

)
+ t

∫ 2

0

µ∗
x(λ)(1− λ)t−1 dλ

⩽ 1 + t

∫ 2

0

φ(λ)(1− λ)t−1 dλ

= 1−
(
1− π(x)

)
+

∫
(0,2]

(1− λ)t dφ(λ)

= π(x) +

∫
(0,2]

(1− λ)t dφ(λ),

where the second equality follows from Lemma 2.6. The first assertion is proved.
c) When t ≡ 1 mod 2, by the result in part a), we have

pt(x, x) = 2π(x)− 1 + t

∫ 2

0

µ∗
x(λ)(1− λ)t−1 dλ.

Therefore, by Lemma 2.6,

pt(x, x) ⩾ 2π(x)− 1 +
(
1− π(x)

)
+ t

∫ 2

0

ψ1(λ)(1− λ)t−1 dλ

= π(x) +

∫
(0,2]

(1− λ)t dψ1(λ).

Similarly,
pt(x, x) ⩽ π(x) +

∫
(0,2]

(1− λ)t dψ2(λ).
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3 Return Probability on Regular Graphs
In this section, we are mainly interested in regular graphs.

3.1 Estimate of Spectral Measure and Convergence Rate
Theorem 3.1. Let G be a non-bipartite, connected, regular, unweighted, simple graph. For
each x ∈ V (G), we have

µQ
x (δ) ⩽ 10

√
δ, 0 ⩽ δ ⩽ 2.

Theorem 3.1 is parallel to the first assertion of [LOG17, Theorem 4.9]. Rather than prove
Theorem 3.1 directly, we will show the following more general result. Note that when G is
regular, d(x)

dmin
= 1 for each x ∈ V (G).

Proposition 3.2. Let G be a non-bipartite, connected, unweighted, simple graph. For each
x ∈ V (G), we have

µQ
x (δ) ⩽

10d(x)
√
δ

dmin
, 0 ⩽ δ ⩽ 2.

Proof. Fixing a vertex x ∈ V (G), we define f as in Lemma 2.4. Recall that we denote
dmin = min

{
d(v) ; v ∈ V (G)

}
.

a) If f(y) ⩾ 0 for all y ∈ V (G), then

10d(x)
√
δ

dmin
⩾ δ ⩾ 〈Qf, f〉w =

∑
(v,u)∈E(G)

w(v, u)
∣∣f(v) + f(u)

∣∣2
⩾

∑
y∈N(x)

w(x, y)
∣∣f(x) + f(y)

∣∣2 ⩾ w(x)
∣∣f(x)∣∣2

= µQ
x (δ).

b) We may now assume without loss of generality that
{
v ∈ V (G) ; f(v) < 0

}
is

non-empty. Let S :=
{
s ∈ V (G) ; f(s) > 0

}
and T :=

{
t ∈ V (G) ; f(t) < 0

}
. By

our assumptions, both S and T are non-empty. Recall that for each edge e ∈ E(G), we
have w(e) = 1 because G is assumed to be unweighted. However, we do the following
construction of an auxiliary graph G′ for general weighted graphs because this will also be
useful subsequently in the proof of Proposition 4.1:

(1) The vertex set V ′ of G′ includes V (G). Also, if (u, v) = e ∈ E(G) and u, v ∈ S,
we introduce two vertices u(e) and v(e) in V ′. Similarly, if (u, v) = e ∈ E(G) and
u, v ∈ T , we introduce two vertices u(e) and v(e) in V ′.

(2) Construct the edge set E ′ of G′ and their weights: If e = (u, v) ∈ E(G) with u
and v both in S, we introduce three edges (u, u(e)), (u(e), v(e)), and (v(e), v) in E ′;
if e = (u, v) ∈ E(G) with u and v both in T , we introduce three edges (u, u(e)),

Page 13 of 59



(u(e), v(e)), and (v(e), v) in E ′. Suppose e = (u, v) has weight w(u, v) in G. For
edges introduced above, we assign w(u, v) as their weights w′ in G′, i.e.,

w′(u, u(e)) = w′(u(e), v(e)) = w′(v(e), v) = w(u, v).

If e = (u, v) ∈ E(G) is not of the aforementioned forms, introduce one edge (u, v)
in E ′ and set its weight w′(u,w) in G′ as w(u, v).

It is obvious that G′ is connected. By the above construction, for v ∈ V (G) ⊆ V ′, v has
the same weight in G and in G′. For v ∈ V ′, denote its weight in G′ as w′(v). Since G is
unweighted in the current setup, G′ is also unweighted. So for a vertex v′ of G′, w′(v′) equals
the degree of v′ in G′.

c) Define a function g : V ′ → R:

g(v) :=

{∣∣f(v)∣∣, v ∈ S ∪ T ,
0, otherwise.

It follows that

g(x) = f(x) =
√
µQ
x (δ)/w(x),∑

v∈V ′

∣∣g(v)∣∣2w′(v) =
∑

v∈V (G)

∣∣f(v)∣∣2w(v) = 1,

∑
(v1,v2)∈E′

w′(v1, v2)
∣∣g(v1)− g(v2)∣∣2 ⩽ ∑

(v1,v2)∈E(G)

w(v1, v2)
∣∣f(v1) + f(v2)

∣∣2.
We claim that g(v′) = 0 for some v′ ∈ V ′. Otherwise, if V ′ \ (S ∪ T ) = ∅, all edges in G
would be between S and T , contradicting the assumption that G is non-bipartite.

Set B :=
{
y ∈ V ′ ;

∣∣g(y) − g(x)∣∣ ⩽ g(x)
2

}
. It follows that B ⊆ S ∪ T ⊊ V ′. Since G′ is

connected, there exists a shortest path P in G′ from x to V ′ \B.
d) If |P| = 1 and at least half of the neighbors of x are outside of B, then we have

δ ⩾ 〈Qf, f〉w =
∑

(v1,v2)∈E(G)

∣∣f(v1) + f(v2)
∣∣2

⩾
∑

(v1,v2)∈E′

∣∣g(v1)− g(v2)∣∣2
⩾ d(x)

2
· 1
4

∣∣g(x)∣∣2 = d(x)

2
· µ

Q
x (δ)

4w(x)

=
µQ
x (δ)

8
.

Therefore, when δ ⩽ 1, µQ
x (δ) ⩽ 8δ ⩽ 8

√
δ ⩽ 10d(x)

√
δ

dmin
; when δ > 1, µQ

x (δ) ⩽ 1 < δ <
10d(x)

√
δ

dmin
. The result holds in this case.
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e) If |P| = 1 and at least half of the neighbors of x are inside of B, then the neighbors of
x inside of B are in S ∪ T and are therefore of degree at least dmin in G′. Thus,

wt(B;G′) ⩾ d(x)

2
· dmin ⩾ d2min

6
|P|.

If |P| ⩾ 2, we claim that wt(B;G′) ⩾ d2min
6
|P| still holds. To justify this claim, we assume

that P = u0u1 · · · urur+1, where r = |P | − 1. Consider

B̃ :=
{
y ∈ V ′ ; dist(x, y;G′) ⩽ r

}
⊆ B ⊆ S ∪ T.

Since P is a shortest path, u0, u1, . . ., ur−2, and ur−1 are all in S∪T , and are therefore of the
same degree in both G and G′, which is at least dmin. Setting K := {u0, u3, . . . , u3⌊(r−1)/3⌋},
we have

|K| = dr/3e.

Counting the number of vertices in B̃, we get

|B̃| ⩾ (r + 1) + |K|(dmin − 2),

where r+1 counts the vertices {u0, u1, . . . , ur}, and |K|(dmin− 2) counts the neighbors of K
that are in B̃ but not on P . Hence, we get that

wt(B;G′) ⩾ wt(B̃;G′) ⩾ dmin|B̃|
⩾ dmin ·

(
(r + 1) + |K|(dmin − 2)

)
⩾ dmin ·

(
(r + 1) +

r

3
(dmin − 2)

)
⩾ d2minr

3
=
d2min
3

(
|P| − 1

)
⩾ d2min

6
|P|.

So our claim holds.
Therefore, we may assume that wt(B;G′) ⩾ d2min

6
|P|.

f) Note that
∑

v∈V ′

∣∣g(v)∣∣2w′(v) = 1. It is easy to get

wt(B;G′) ⩽ 1∣∣1
2
g(x)

∣∣2 =
4w(x)

µQ
x (δ)

=
4d(x)

µQ
x (δ)

.

Therefore,
4d(x)

µQ
x (δ)

⩾ wt(B,G′) ⩾ d2min
6
|P|.

Thus,
|P| ⩽ 24d(x)

d2minµ
Q
x (δ)

.
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Hence,

δ ⩾ 〈Qf, f〉w =
∑

(v1,v2)∈E(G)

∣∣f(v1) + f(v2)
∣∣2

⩾
∑

(v1,v2)∈E′

∣∣g(v1)− g(v2)∣∣2 ⩾ |P|−1∑
i=0

∣∣g(ui)− g(ui+1)
∣∣2

⩾ 1

|P|

(|P|−1∑
i=0

∣∣g(ui)− g(ui+1)
∣∣)2

⩾ 1

|P|
∣∣g(u0)− g(u|P|)

∣∣2
⩾ 1

|P|

∣∣g(x)∣∣2
4

=
µQ
x (δ)

4|P|w(x)

=
µQ
x (δ)

4d(x)|P|
.

Proceeding further, we have

δ ⩾ µQ
x (δ)

4d(x)|P|
⩾ µQ

x (δ)

4d(x) 24d(x)

d2minµ
Q
x (δ)

⩾
(dminµ

Q
x (δ)

10d(x)

)2

.

Therefore,

µQ
x (δ) ⩽

10d(x)
√
δ

dmin
, 0 ⩽ δ ⩽ 2.

The upper bound in Theorem 3.1 could be easily used to get lower bounds on the eigen-
values of P . To this end, we need Lemma 3.3:

Lemma 3.3. Let G be a finite, connected, weighted graph. We have∑
x∈V

µQ
x (δ) =

∣∣{j ; λQj ⩽ δ}
∣∣.

Proof. Recall that the eigenvalues of Q are

0 ⩽ λQmin = λQ1 ⩽ λQ2 ⩽ λQ3 ⩽ · · · ⩽ λQn−1 < λQn = λQmax = 2.

Let h1, h2, . . ., hn be an orthonormal basis of ℓ2(V,w) such that

Qhj = λQj hj, 1 ⩽ j ⩽ n.

It follows that ∑
x∈V

|〈hj, ex〉w|2 = ‖hj‖2w = 1.
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Therefore, ∑
x∈V

µQ
x (δ) =

∑
x∈V

〈
IQ(δ)ex, ex

〉
w
=

∑
x∈V

‖IQ(δ)ex‖2w

=
∑
x∈V

∥∥∥ ∑
j ; λQ

j ⩽δ

〈ex, hj〉whj
∥∥∥2

=
∑
x∈V

∑
j ; λQ

j ⩽δ

∣∣〈ex, hj〉w∣∣2
=

∑
j ; λQ

j ⩽δ

∑
x∈V

∣∣〈ex, hj〉w∣∣2 = ∑
j ; λQ

j ⩽δ

‖hj‖2w =
∑

j ; λQ
j ⩽δ

1

=
∣∣{j ; λQj ⩽ δ}

∣∣.
Corollary 3.4. Let G be a regular, non-bipartite, finite, simple, connected, unweighted graph.
For 1 ⩽ k ⩽ n, we have λQk ⩾ k2

100n2 . Therefore, λPk ⩾ −1 + k2

100n2 .

Corollary 3.4 is similar to the second assertion of [LOG17, Theorem 4.9].

Proof. By Lemma 3.3 and Theorem 3.1,∣∣{j ; λQj ⩽ δ}
∣∣ = ∑

x∈V

µQ
x (δ) = 10n

√
δ.

Therefore, if 10n
√
δ < k,

∣∣{j ; λQj ⩽ δ}
∣∣ < k. In other words, λQk ⩾ k2

100n2 .

Our main interest is to get bounds on return probabilities of simple random walk on
regular graphs.

Theorem 3.5. Let G be a regular, non-bipartite, simple, connected, unweighted graph. For
each x ∈ V , simple random walk on G satisfies

0 ⩽ pt(x, x)− π(x) ⩽
18√
t

for t ≡ 0 mod 2,∣∣pt(x, x)− π(x)∣∣ ⩽ 9√
t

for t ≡ 1 mod 2.

Proof. Theorem 3.5 is parallel to the last assertion of [LOG17, Theorem 4.9].
a) Set

φ(λ) :=


10
√
λ if λ ⩾ 0 and 10

√
λ ⩽ µ∗

x(1),
µ∗
x(1) for intermediate values of λ,
µ∗
x(2)− 10

√
2− λ if λ ⩽ 2 and µ∗

x(2)− 10
√
2− λ ⩾ µ∗

x(1).

We claim that the function φ defined above satisfies the conditions in Lemma 2.7(1). In
fact, it is known that µ∗

x(λ) < 10
√
λ from [LOG17, Theorem 4.9]. On the other hand, by
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Theorem 3.1,

µ∗
x(λ) =

〈
IL
(
(0, λ]

)
ex, ex

〉
w

=
〈
IL
(
(0, 2]

)
ex, ex

〉
w
−
〈
IL
(
(λ, 2]

)
ex, ex

〉
w

= 1−
〈
IL(0)ex, ex

〉
w
−
〈
IL
(
(λ, 2]

)
ex, ex

〉
w

⩾ 1−
〈
IL(0)ex, ex

〉
w
−
〈
IL
(
[λ, 2]

)
ex, ex

〉
w

= 1− π(x)−
〈
IQ(2− λ)ex, ex

〉
w

⩾ 1− π(x)− 10
√
2− λ

= µ∗
x(2)− 10

√
2− λ.

The claim is proved.
Therefore, for t ≡ 0 mod 2, by Lemma 2.7,

π(x) ⩽ pt(x, x) ⩽ π(x) +

∫ 2

0

(1− λ)tφ′(λ) dλ

⩽ π(x) + 2

∫ 1

0

(1− λ)t 5√
λ

dλ

= π(x) + 10

∫ 1

0

(1− λ)t 1√
λ

dλ

⩽ π(x) +
18√
t
,

where the last inequality follows from Lemma A.1. The first assertion is proved.
b) Set

ψ1(λ) :=
(
µ∗
x(2)− 10

√
2− λ

)
∨ 0, λ ∈ [0, 2],

and
ψ2(λ) := (10

√
λ ) ∧ µ∗

x(2), λ ∈ [0, 2].

Then they satisfy the conditions of Lemma 2.7(2). Consequently, we have

π(x) +

∫ 2

0

(1− λ)tψ′
1(λ) dλ ⩽ pt(x, x) ⩽ π(x) +

∫ 2

0

(1− λ)tψ′
2(λ) dλ.

By some elementary calculation, we get that

π(x)−
∫ 1

0

(1− λ)t 5√
λ

dλ ⩽ pt(x, x) ⩽ π(x) +

∫ 1

0

(1− λ)t 5√
λ

dλ.

The second assertion follows immediately from Lemma A.1.

For a graph that is not necessarily regular, we have the following result:
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Proposition 3.6. Let G be a non-bipartite, simple, connected, unweighted graph. For each
x ∈ V , simple random walk on G satisfies

0 ⩽ pt(x, x)− π(x) ⩽
18d(x)

dmin
√
t

for t ≡ 0 mod 2,∣∣pt(x, x)− π(x)∣∣ ⩽ 9d(x)

dmin
√
t

for t ≡ 1 mod 2.

Proof. To prove this proposition, we may use an argument similar to the one in the proof of
Theorem 3.5: instead of using Theorem 3.1, we will employ Proposition 3.2. When G is not
necessarily regular, checking the proof of [LOG17, Theorem 4.9] carefully, we find

µ∗
x(δ) ⩽

10d(x)
√
δ

dmin
, 0 ⩽ δ ⩽ 2.

Therefore, we set

φ(λ) :=


10d(x)

√
λ

dmin
if λ ⩾ 0 and 10d(x)

√
λ

dmin
⩽ µ∗

x(1),
µ∗
x(1) for intermediate values of λ,
µ∗
x(2)−

10d(x)
√
2−λ

dmin
if λ ⩽ 2 and µ∗

x(2)−
10d(x)

√
2−λ

dmin
⩾ µ∗

x(1),

ψ1(λ) :=
(
µ∗
x(2)−

10d(x)
√
2−λ

dmin

)
∨ 0, λ ∈ [0, 2],

and
ψ2(λ) :=

(10d(x)
√
λ

dmin

)
∧ µ∗

x(2), λ ∈ [0, 2].

The argument in the proof of Theorem 3.5 will proceed with suitable modification; and the
conclusion of Proposition 3.6 follows easily. Details are omitted.

3.2 Sharpness, Spectral Radius, and Non-diagonal Convergence
The order of 1√

t
in Theorem 3.5 is sharp. We show this by the following Example 3.7.

Example 3.7. Consider an unweighted graph G with V (G) = Z: (i, j) ∈ E(G) if and only
if 0 < |i − j| ⩽ 2. Obviously, G is non-bipartite, connected, and 4-regular. For the simple
random walk on G, [Davis and McDonald, 1995, Theorem 1.1] implies

lim
t→∞

√
5tpt(0, 0) =

1√
π
.

Therefore,
pt(0, 0) ∼

1√
5πt

as t→∞.

Hence, the sharpness is demonstrated.
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In Section 3.1, we focused on the negative spectrum of P by considering Q = I+P . As a
comparison, in [LOG17, Theorem 4.9], L = I −P is exploited and so essentially the positive
spectrum of P is focused on. Recalling that the spectrum σ(P ) of P is contained in [−1, 1],
we set

γ− := 1 + infσ(P ),
γ+ := 1− sup

(
σ(P ) \ {1}

)
.

It is obvious that γ− and γ+ are both non-negative. But which is larger between γ− and γ+?
When G is finite, it depends; but when G is infinite, we have the following fact due to [Mao
and Song, 2013]:

Proposition 3.8. Let G = (V,E) be a connected, weighted, infinite, locally finite graph, with
wt(V ) =∞. Then we have γ+ ⩽ γ−. In other words, the spectral radius of P is achieved by
the positive spectrum.

Proof. To begin, since wt(V ) =∞, we see that the constant function is not in ℓ2(V,w) and
1 is not an eigenvalue of P .

For any fixed small number ε > 0, there exists a real function f ∈ ℓ2(V,w), with ‖f‖w = 1,
satisfying

−1 + γ− + ε ⩾ 〈Pf, f〉w =
∑
x∈V

w(x)(Pf)(x)f(x) =
∑
x∈V

w(x)
( ∑
y∈N(x)

p(x, y)f(y)
)
f(x).

Hence, we have

1− γ− − ε ⩽ |〈Pf, f〉w| =
∣∣∣∣∑
x∈V

w(x)
( ∑
y∈N(x)

p(x, y)f(y)
)
f(x)

∣∣∣∣
⩽

∑
x∈V

w(x)
( ∑
y∈N(x)

p(x, y)|f(y)|
)
|f(x)|

= 〈P |f |, |f |〉w.

Since 1 is not an eigenvalue of P , we further have

〈P |f |, |f |〉w ⩽ 1− γ+.

Hence, 1− (γ− + ε) ⩽ 1− γ+. It follows that

γ+ ⩽ γ− + ε.

Because ε > 0 is arbitrary, we conclude γ+ ⩽ γ−.

Remark. Proposition 3.8 is stated in the language of graphs; it is nothing but a “translation”
of [Mao and Song, 2013, Theorem 1.1].

Using Theorem 3.5, we can also get the following result on non-diagonal convergence.
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Theorem 3.9. Let G be a regular, non-bipartite, simple, connected, unweighted graph. For
x, y ∈ V and t ⩾ 2, simple random walk on G satisfies∣∣pt(x, y)− π(y)∣∣ ⩽ 18√

t
for t ≡ 0 mod 2,

∣∣pt(x, y)− π(y)∣∣ ⩽ 18
4
√
t2 − 1

for t ≡ 1 mod 2.

Proof. Because G is regular, for s ⩾ 1, we have∣∣ps(x, y)− π(y)∣∣ = ∣∣〈ex, P sey
〉
w
− π(y)

∣∣ = ∣∣∣∫
(0,2]

(1− λ)s d
〈
ex, IL(λ)ey

〉
w

∣∣∣
=

∣∣∣∫
(0,2]

(1− λ)s d
〈
L(λ)ex, IL(λ)ey

〉
w

∣∣∣ ⩽ ∫
(0,2]

|1− λ|s d
∣∣〈IL(λ)ex, IL(λ)ey〉w∣∣.

Therefore, for t ≡ 0 mod 2,∣∣pt(x, y)− π(y)∣∣ ⩽ ∫
(0,2]

|1− λ|t d
∣∣〈IL(λ)ex, IL(λ)ey〉w∣∣

⩽
(∫

(0,2]

(1− λ)t d
〈
IL(λ)ex, IL(λ)ex

〉
w

)1/2(∫
(0,2]

(1− λ)t d
〈
IL(λ)ey, IL(λ)ey

〉
w

)1/2

=
(∫

(0,2]

(1− λ)t d
〈
IL(λ)ex, ex

〉
w

)1/2(∫
(0,2]

(1− λ)t d
〈
IL(λ)ey, ey

〉
w

)1/2

=
(∫

(0,2]

(1− λ)t dµ∗
x(λ)

)1/2(∫
(0,2]

(1− λ)t dµ∗
y(λ)

)1/2

=
(
pt(x, x)− π(x)

)1/2(
pt(y, y)− π(y)

)1/2 ⩽ 18√
t
,

where we are using Eq. (1) to get the last equality and Theorem 3.5 to get the last inequality.
Hence, for x, y ∈ V and t ≡ 0 mod 2, we have

∣∣pt(x, y)− π(y)∣∣ ⩽ 18√
t
.

Similarly, for t ≡ 1 mod 2 and t ⩾ 3,∣∣pt(x, y)− π(y)∣∣ ⩽ ∫
(0,2]

|1− λ|(t−1)/2|1− λ|(t+1)/2 d
∣∣〈IL(λ)ex, IL(λ)ey〉w∣∣

⩽
(∫

(0,2]

(1− λ)t−1 d
〈
IL(λ)ex, IL(λ)ex

〉
w

)1/2(∫
(0,2]

(1− λ)t+1 d
〈
IL(λ)ey, IL(λ)ey

〉
w

)1/2

=
(
pt−1(x, x)− π(x)

)1/2(
pt+1(y, y)− π(y)

)1/2 ⩽ 18
4
√
t2 − 1

.

The proof is complete.

Remark. We will give several results on return probability bound throughout this article.
Theorem 3.9 is a sample of deducing non-diagonal convergence from return probability
bounds.
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4 Volume Growth Conditions
For lazy random walk, [LOG17, Corollaries 4.10 and 4.11] presented return probability

bounds depending on volume growth conditions. We have parallel results for simple random
walk. Let us begin with the following proposition, which is comparable to the first assertion
of [LOG17, Proposition 4.7].

Proposition 4.1. Let G be a non-bipartite, finite or infinite, simple, connected, weighted
graph with weight at least 1 for each edge. For each vertex x ∈ V (G), δ ∈ (0, 2), α ∈ (0, 1),
and r ⩾ 0, wt(x, r) > w(x)

(1−α)2µQ
x (δ)

implies µQ
x (δ) ⩽ δw(x)

α2 r.

Proof. We may assume µQ
x (δ) > 0. Fixing a vertex x ∈ V (G), we define f as in Lemma 2.4.

a) If f(y) ⩾ 0 for all y ∈ V (G), then

δ ⩾ 〈Qf, f〉w =
∑

(v,u)∈E(G)

w(v, u)
∣∣f(v) + f(u)

∣∣2 ⩾ ∣∣f(x)∣∣2 = µQ
x (δ)

w(x)
.

Note that wt(x, r) > w(x)

(1−α)2µQ
x (δ)

implies r ⩾ 1. Therefore,

µQ
x (δ) ⩽ δw(x) ⩽ δw(x)

α2
r.

b) From now on, we may assume that T :=
{
t ∈ V (G) ; f(t) < 0

}
is non-empty. We

construct G′ and g as in the proof of Proposition 3.2 and use notations there. Set

B(α) :=
{
y ∈ V ′ ; |g(y)− g(x)| ⩽ αg(x)

}
.

It follows that B(α) ⊆ S ∪ T ⊊ V ′. Since G′ is connected, there exists a shortest path
P = u0u1 · · · u|P| in G′ from x to V ′ \B(α) with u0 = x. Hence,

δ ⩾ 〈Qf, f〉w =
∑

(v1,v2)∈E(G)

w(v1, v2)
∣∣f(v1) + f(v2)

∣∣2
⩾

∑
(v1,v2)∈E′

w′(v1, v2)
∣∣g(v1)− g(v2)∣∣2 ⩾ |P|−1∑

i=0

∣∣g(ui)− g(ui+1)
∣∣2

⩾ 1

|P|

(|P|−1∑
i=0

∣∣g(ui)− g(ui+1)
∣∣)2

⩾ 1

|P|
∣∣g(u0)− g(u|P|)

∣∣2
>
α2

∣∣g(x)∣∣2
|P|

=
α2µQ

x (δ)

w(x)|P|
.

c) We claim that{
y ∈ V ′ ; dist(y, x;G′) ⩽ |P| − 1

}
=

{
y ∈ V (G) ; dist(y, x;G) ⩽ |P| − 1

}
. (2)
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In fact, {
y ∈ V ′ ; dist(y, x;G′) ⩽ |P| − 1

}
⊆ B(α) ⊆ S ∪ T ⊆ V (G).

By the construction of G′, dist(y1, y2;G′) ⩾ dist(y1, y2;G) for y1, y2 ∈ V . Therefore,{
y ∈ V ′ ; dist(y, x;G′) ⩽ |P| − 1

}
⊆

{
y ∈ V (G) ; dist(y, x;G) ⩽ |P| − 1

}
.

Suppose the above inclusion is strict. Then there will be a vertex ṽ ∈ V (G) that is not in
the left-hand side of Eq. (2), and a path P̃ = ũ0ũ1 · · · ũ|P̃| in G with |P̃| ⩽ |P| − 1, ũ0 = x,
and ũ|P̃| = ṽ. Set

L :=
{
0 ⩽ i ⩽ |P̃| − 1 ; {ũi, ũi+1} ⊆ S or {ũi, ũi+1} ⊆ T

}
.

Then L must be non-empty, otherwise ṽ ∈ V (G) would be in the left-hand side of Eq. (2).
Pick the smallest number i∗ in L and write e = (ũi∗ , ũi∗+1). By the construction of G′ and
g, we have g(ũ(e)i∗ ) = 0. Thus, ũ0ũ1 · · · ũi∗ ũ(e)i∗ is a path in G′ linking x and V ′ \ B(α), whose
length is i∗ + 1 ⩽ |P̃| < |P|. This is a contradiction. Therefore, Eq. (2) holds.

d) If wt(x, r;G) > w(x)

(1−α)2µQ
x (δ)

, we must have r ⩾ |P|. In fact, we notice that

wt(B(α);G′)(1− α)2g2(x) ⩽
∑

y∈B(α)

∣∣g(y)∣∣2w′(y) ⩽
∑
y∈V ′

∣∣g(y)∣∣2w′(y) = 1.

Therefore,

wt(x, |P| − 1;G′) ⩽ wt(B(α);G′) ⩽ 1

(1− α)2g2(x)
=

w(x)

(1− α)2µQ
x (δ)

.

Hence, Eq. (2) gives

wt(x, |P| − 1;G) = wt(x, |P| − 1;G′) ⩽ w(x)

(1− α)2µQ
x (δ)

.

Consequently, wt(x, r) > w(x)

(1−α)2µQ
x (δ)

implies r ⩾ |P|.
e) By the results in b) and d), we have

δ ⩾ α2µQ
x (δ)

w(x)|P|
⩾ α2µQ

x (δ)

w(x)r
.

Hence, we arrive at the conclusion that µQ
x (δ) ⩽ δw(x)

α2 r.

Corollary 4.2. Let G be a non-bipartite, finite or infinite, simple, connected, weighted
graph with weight at least 1 for each edge. For each vertex x ∈ V and δ < 1

r wt(x,r) , we have
µQ
x (δ) ⩽ 4w(x)

wt(x,r) .
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Corollary 4.2 is comparable to the second assertion of [LOG17, Proposition 4.7]. To get
a proof, one need only exploit Proposition 4.1 and mimic the proof for the second assertion
of [LOG17, Proposition 4.7].

Now we present return probability bounds based on volume growth conditions.

Corollary 4.3. Let G be a non-bipartite, infinite, simple, connected, weighted graph with
weight at least 1 for each edge. Suppose that c > 0 and D ⩾ 1 are constants such that
wt(x, r) ⩾ c(r + 1)D for all r ⩾ 0. Then for all δ ∈ (0, 2),

µ∗
x(δ) ⩽ Cw(x)δD/(D+1),

µQ
x (δ) ⩽ Cw(x)δD/(D+1),

where
C :=

(D + 1)2

c1/(D+1)D2D/(D+1)
.

For t ⩾ 1, simple random walk satisfies

pt(x, x) ⩽ 2C ′w(x)t−D/(D+1) for t ≡ 0 mod 2,

pt(x, x) ⩽ C ′w(x)t−D/(D+1) for t ≡ 1 mod 2,

where
C ′ :=

D + 1

c1/(D+1)D(D−1)/(D+1)
Γ
( D

D + 1

)
.

Proof. The bound on µ∗
x is proved in [LOG17, Corollary 4.10]. A similar argument can be

used to prove the bound on µQ
x : in lieu of [LOG17, Eq. (4.4)], we use Corollary 4.2. To prove

the bound on return probabilities, we set

φ(λ) :=


Cw(x)λD/(D+1) if λ ∈ [0, 1) and Cw(x)λD/(D+1) ⩽ µ∗

x(1),
µ∗
x(1) for intermediate values of λ,
µ∗
x(2)− Cw(x)(2− λ)D/(D+1) if λ ∈ [1, 2) and µ∗

x(2)− Cw(x)(2− λ)D/(D+1) ⩾ µ∗
x(1),

and

ψ2(λ) :=

{
Cw(x)λD/(D+1) ∧ µ∗

x(2) if λ ∈ [0, 1),
µ∗
x(2) if λ ∈ [1, 2].

It is easy to see that φ and ψ2 satisfy the conditions in Lemma 2.7. Therefore, we have

pt(x, x) ⩽
2Cw(x)D

D + 1

∫ 1

0

λ−1/(D+1)(1− λ)t dλ for t ≡ 0 mod 2,

pt(x, x) ⩽
Cw(x)D

D + 1

∫ 1

0

λ−1/(D+1)(1− λ)t dλ for t ≡ 1 mod 2.
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But we have∫ 1

0

λ−1/(D+1)(1− λ)t dλ ⩽
∫ 1

0

λ−1/(D+1)e−λt dλ ⩽
∫ ∞

0

λ−1/(D+1)e−λt dλ

=

∫ ∞

0

(s/t)−1/(D+1)e−s d(s/t) = t−D/(D+1)

∫ ∞

0

s−1/(D+1)e−s ds

= t−D/(D+1)Γ
( D

D + 1

)
,

where we introduce a change of variable λt = s to get the first equality. Hence, the bound
on return probabilities is proved.

Corollary 4.3 is comparable to [LOG17, Corollary 4.10]. Using a similar method, one
may get an analogue of [LOG17, Corollary 4.11]. Details are omitted.

5 Mixing Time Bound
We are concerned in this section with mixing time bounds, which are based on the

bounds on vertex spectral measures in Lemma 5.3. As a preparation, we introduce the
following graph parameter.

Definition 5.1. Let G be a finite and weighted graph. We define

K (G) := min
{∑

(v,u)∈E w(v, u)|f(v) + f(u)|2

maxy∈V |f(y)|2
; min

y∈V
f(y) < 0 < max

y∈V
f(y)

}
.

For a bipartite graph G, it is easy to see that K (G) = 0. For non-bipartite graphs, we
have the following lemma.

Lemma 5.2. Let G be a connected and weighted graph, with weight at least 1 for each edge.

(1) Assume that f is a function on V and P = z0z1 · · · z|P| is an edge-simple path. Then

∑
(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2 ⩾ 1

|P|
(
f(z0)− (−1)|P|f(z|P|)

)2
.

(2) If G is also non-bipartite, finite, and simple, then K (G) ⩾ 1
diam(G)+1

.

Proof. a) Note that

∑
(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2 ⩾ |P|−1∑
i=0

∣∣f(zi) + f(zi+1)
∣∣2
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By the Cauchy–Schwarz inequality, we have
|P|−1∑
i=0

∣∣f(zi) + f(zi+1)
∣∣2 = |P|−1∑

i=0

∣∣(−1)if(zi)− (−1)i+1f(zi+1)
∣∣2

⩾ 1

|P|

(|P|−1∑
i=0

(
(−1)if(zi)− (−1)i+1f(zi+1)

))2

=
1

|P|
(
f(z0)− (−1)|P|f(z|P|)

)2
.

The first assertion is proved.
b) Now we deal with the second assertion. Take f satisfying the constraints in Defini-

tion 5.1 such that
K (G) =

∑
(v,u)∈E w(v, u)|f(v) + f(u)|2

maxy∈V |f(y)|2
.

Assume that |f | attains its maximum at x, then

K (G) =

∑
(v,u)∈E w(v, u)|f(v) + f(u)|2

|f(x)|2
.

We may assume f(x) > 0 without loss of generality. Set

S :=
{
s ∈ V ; f(s) ⩾ 0

}
, T :=

{
t ∈ V ; f(t) < 0

}
.

By the assumptions, S and T are both non-empty. Because G is non-bipartite, there exists
an edge (s1, s2) ∈ E with s1, s2 ∈ S, or an edge (t1, t2) ∈ E with t1, t2 ∈ T .

c) If there is an edge (s1, s2) ∈ E with s1, s2 ∈ S, let P̂0 be a shortest path from x to
{s1, s2}. Without loss of generality, we may assume P̂0 is from x to s1. If |P̂0| is odd, we
set P̂ := P̂0; if |P̂0| is even, we set P̂ := P̂0.(s1, s2), the concatenation of P̂0 and the edge
(s1, s2). Hence, P̂ is a path of odd length in any case. Assume

P̂ = u0u1 · · · uk,

with u0 = x. Then k is odd and k ⩽ diam(G) + 1. Hence, by the first assertion,

∑
(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2 ⩾ 1

k

(
f(u0) + f(uk)

)2 ⩾ 1

k

∣∣f(x)∣∣2 ⩾ ∣∣f(x)∣∣2
diam(G) + 1

.

Therefore, in this case,
K (G) ⩾ 1

diam(G) + 1
.

d) If there is an edge (t1, t2) ∈ E with t1, t2 ∈ T , let P0 be a shortest path from x to
{t1, t2}. Without loss of generality, we may assume P0 is from x to t1. If |P0| is even, we
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set P := P0; if |P0| is odd, we set P := P0.(t1, t2). Hence, P is a path of even length in any
case. Assume

P = v0v1 · · · vℓ,

with v0 = x. Then ℓ is even and ℓ ⩽ diam(G) + 1. Hence, by the first assertion,

∑
(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2 ⩾ 1

ℓ

(
f(v0)− f(vℓ)

)2
>

1

ℓ

∣∣f(x)∣∣2 ⩾ ∣∣f(x)∣∣2
diam(G) + 1

.

Therefore, in this case,
K (G) ⩾ 1

diam(G) + 1
.

Now, we present our bounds on vertex spectral measures.

Lemma 5.3. Let G be a finite, simple, connected, weighted graph, with weight at least 1 for
each edge.

(1) For δ ∈ [0, 2) and x ∈ V , µ∗
x(δ) + π(x) ⩽ Rdiam(G)w(x)δ.

(2) If G is also non-bipartite, for δ ∈ [0, 2) and x ∈ V , µQ
x (δ) ⩽ w(x)δ

K (G)
. Moreover, by

Lemma 5.2, we have µQ
x (δ) ⩽

(
diam(G) + 1

)
w(x)δ for δ ∈ [0, 2).

Proof. The first assertion follows immediately from [LOG17, Proposition 4.2]. We now deal
with the second assertion. Fix a vertex x ∈ V and define f as in Lemma 2.4.

When δ ∈ [0, λQmin), µQ
x (δ) = 0 by definition. So the inequality holds automatically.

When λQmin ⩽ δ < λQmax = 2, we know that f is orthogonal to the eigenspace of Q
corresponding to λQmax = 2, which is spanned by (1, 1, . . . , 1), the constant vector. Therefore,
by Definition 5.1, we have

δ ⩾ 〈f,Qf〉w =
∑

(v,u)∈E

w(v, u)|f(v) + f(u)|2 ⩾ f(x)2K (G) =
µQ
x (δ)K (G)

w(x)
.

By Lemma 5.2(2), Lemma 5.3(2), and Lemma 3.3, we have the following corollary.

Corollary 5.4. For any non-bipartite, finite, simple, connected, weighted graph G with
weight at least 1 for each edge, we have

λQk ⩾ kK (G)

wt(V )
⩾ k(

diam(G) + 1
)

wt(V )

for 1 ⩽ k ⩽ n. Therefore,

λPk ⩾ −1 + kK (G)

wt(V )
⩾ −1 + k(

diam(G) + 1
)

wt(V )
.
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As mentioned in Section 1.1, Corollary 5.4, combined with [LOG17, Proposition 4.2],
improves the result in [Landau and Odlyzko, 1981].

To get a mixing time bound, we first give a bound on return probabilities using Lemma 5.3.

Corollary 5.5. Let G be a non-bipartite, finite, simple, connected, unweighted graph, and
t ≡ 0 mod 2. Then we have

0 ⩽ pt(x, x)− π(x)
π(x)

⩽
2
(
diam(G) + 1

)
wt(V )

t
.

Proof. Set

φ̃(λ) :=


Rdiam(G)w(x)λ if λ ∈ [0, 1) and Rdiam(G)w(x)λ ⩽ µ∗

x(1),
µ∗
x(1) for intermediate values of λ,

µ∗
x(2)−

(
diam(G) + 1

)
w(x)(2− λ) if λ ∈ [1, 2] and

µ∗
x(2)−

(
diam(G) + 1

)
w(x)(2− λ) ⩾ µ∗

x(1).

By Lemma 5.3, using a similar argument as in part a) of the proof of Theorem 3.5, the
function φ̃ defined above satisfies the conditions in Lemma 2.7(1). Therefore, for t ≡ 0 mod 2,

0 ⩽ pt(x, x)− π(x) ⩽
∫ 2

0

(1− λ)tφ̃′(λ) dλ

⩽ Rdiam(G)w(x)

∫ 1

0

(1− λ)t dλ+
(
diam(G) + 1

)
w(x)

∫ 1

0

(1− λ)t dλ

⩽ 2
(
diam(G) + 1

)
w(x)

∫ 1

0

(1− λ)t dλ.

Hence,
pt(x, x)− π(x)

π(x)
⩽ 2

(
diam(G) + 1

)w(x)
π(x)

∫ 1

0

(1− λ)t dλ.

But we know w(x)
π(x)

= wt(V ) and∫ 1

0

(1− λ)t dλ ⩽
∫ 1

0

exp{−λt} dλ ⩽
∫ ∞

0

exp{−λt} dλ =
1

t
.

Therefore,
pt(x, x)− π(x)

π(x)
⩽

2
(
diam(G) + 1

)
wt(V )

t
.

We are now almost in position to give the following mixing time bound.

Corollary 5.6. For a non-bipartite, finite, simple, connected, unweighted graph G, the
uniform mixing time of the simple random walk on G satisfies

τ∞(1/4) ⩽ 8n3.

If we further assume that G is regular, then τ∞(1/4) ⩽ 24n2.
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Corollary 5.6 is parallel to [LOG17, Corollaries 4.3 and 4.6]. In the proof of Corollary 5.6,
the following lemma will be useful.

Lemma 5.7. For a reversible Markov chain with stationary distribution π and t ≡ 0 mod 2,
we have ∣∣∣∣pt(x, y)− π(y)π(y)

∣∣∣∣ ⩽
√
pt(x, x)− π(x)

π(x)

√
pt(y, y)− π(y)

π(y)
.

In addition, maxx,y

∣∣pt(x,y)−π(y)
π(y)

∣∣ is decreasing in t.

Proof. One may refer to the proof of [LOG17, Proposition A.1]. The monotonicity is men-
tioned in [Lyons and Oveis Gharan, 2021].

Proof of Corollary 5.6. a) Combining Lemma 5.7 and Corollary 5.5, for t ≡ 0 mod 2, we
have

max
x,y

∣∣∣pt(x, y)− π(y)
π(y)

∣∣∣ ⩽ max
x

pt(x, x)− π(x)
π(x)

⩽
2
(
diam(G) + 1

)
wt(V )

t
.

In addition, we notice that wt(V ) ⩽ n(n− 1). Because

2
(
diam(G) + 1

)
wt(V )

8n3
⩽ 2n · n(n− 1)

8n3
⩽ 1

4
,

the second assertion of Lemma 5.7 ensures

τ∞(1/4) ⩽ 8n3.

b) To prove the second assertion, we assume G is d-regular. By Lemma 2.5, we have

diam(G) + 1 ⩽ 3n

d
.

In addition, wt(V ) = nd. Therefore, we have

2
(
diam(G) + 1

)
wt(V )

24n2
⩽ 1

4
.

Consequently, the second assertion of Lemma 5.7 gives

τ∞(1/4) ⩽ 24n2.
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6 Transitive Case
We consider vertex-transitive graphs in this section. Recall that a graph G is vertex-

transitive if for every two vertices x and y of G, there is an automorphism φ : G → G such
that φ(x) = y. When a graph G is vertex-transitive, all vertices of G have the same weight,
denoted by w.

6.1 Estimate of Spectral Measure
Given a vertex-transitive graph G, set

N#(r) :=
∣∣{v ∈ V ; dist(v, x) ⩽ r}

∣∣.
This value does not depend on the choice of x because G is vertex-transitive. Furthermore,
as in [LOG17, Lemma 6.4], for every two vertices x, y ∈ V , it is easy to see that ‖FQ

x ‖w =
‖FQ

y ‖w.

Lemma 6.1. When G is vertex-transitive, for each x ∈ V ,

QFQ
x =

∑
v∈N(x)

w(x, v)

w
(FQ

x + FQ
v ).

Proof. By the definition of FQ
x ,

QFQ
x =

QIQ(δ)1x

w
=
IQ(δ)Q1x

w
.

However, by direct calculation,

Q1x =
∑

v∈N(x)

w(x, v)

w
(1x + 1v).

Thus, we have

QFQ
x =

1

w
IQ(δ)

∑
v∈N(x)

w(x, v)

w
(1x + 1v)

=
∑

v∈N(x)

w(x, v)

w

(IQ(δ)1x

w
+
IQ(δ)1v

w

)
=

∑
v∈N(x)

w(x, v)

w
(FQ

x + FQ
v ).

The following Theorem 6.2 is similar to the first assertion of [LOG17, Theorem 6.1].
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Theorem 6.2. Let G be a vertex-transitive, non-bipartite, simple, connected, weighted graph
with weight at least 1 for each edge. For each x ∈ V , c ∈ (0, 1), and δ ∈

(
0, 2

w

]
, we have

µQ
x (δ) ⩽

1

c2N#
(

arcsin
√

(1−c)/2

arcsin
√

wδ/2

) .
Furthermore, for δ ∈ (0, 2],

µQ
x (δ) ⩽

1

c2N#
(√

1−c√
wδ

) .
Proof. Fix a vertex x ∈ V .

a) Consider the spectral embedding {FQ
v ; v ∈ V } based on Q. Let

ρ := ‖FQ
x ‖w, β0 := max

v∈N(x)
‖FQ

x + FQ
v ‖w.

We have

δ ⩾ 1

‖FQ
x ‖2w

〈
QFQ

x , F
Q
x

〉
w
=

1

‖FQ
x ‖2w

〈 ∑
v∈N(x)

w(x, v)

w
(FQ

x + FQ
v ), FQ

x

〉
w

=
1

‖FQ
x ‖2w

∑
v∈N(x)

w(x, v)

w

(
‖FQ

x ‖2w +
〈
FQ
v , F

Q
x

〉
w

)
=

1

‖FQ
x ‖2w

∑
v∈N(x)

w(x, v)

w

‖FQ
x + FQ

v ‖2w
2

⩾ 1

2wρ2
max
v∈N(x)

‖FQ
x + FQ

v ‖2w =
1

2wρ2
β2
0 .

In other words, β0

2ρ
⩽

√
wδ/2. Since we assumed that δ ∈ (0, 2

w
], by the monotonicity of

arcsin function on the interval [0, 1], we have

2 arcsin β0
2ρ

⩽ 2 arcsin
√
wδ/2.

b) Set B0 := B
(
x,

arcsin
√

(1−c)/2

arcsin
√

(wδ)/2

)
. For v ∈ B0, let P = u0u1 · · · ur−1ur be a shortest path

joining x and v, with u0 = x and ur = v. Define

F̃i := (−1)iFQ
ui
, i = 0, 1, 2, . . . , r.

Then r ⩽ arcsin
√

(1−c)/2

arcsin
√

(wδ)/2
, and

∥∥F̃i − F̃i+1

∥∥
w
=

∥∥FQ
ui
+ FQ

ui+1

∥∥
w
, i = 0, 1, 2, . . . , r − 1.
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Write θ(h1, h2) for the angle between h1, h2 ∈ ℓ2(V,w). Then using the sphere metric, we get

θ
(
F̃0, F̃r

)
⩽

r−1∑
i=0

θ
(
F̃i, F̃i+1

)
=

r−1∑
i=0

2 arcsin
∥∥F̃i − F̃i+1

∥∥
w

2ρ
=

r−1∑
i=0

2 arcsin
∥∥FQ

ui
+ FQ

ui+1

∥∥
w

2ρ

⩽
r−1∑
i=0

2 arcsin β0
2ρ

⩽ 2r arcsin
√
wδ/2

⩽ 2
arcsin

√
(1− c)/2

arcsin
√
wδ/2

arcsin
√
wδ/2 = 2 arcsin

√
(1− c)/2

= arccos c.

(3)

Thus, ∣∣cos θ
(
FQ
x , F

Q
v

)∣∣ = cos θ
(
F̃0, F̃r

)
⩾ c.

In summary, if v ∈ B0 = B
(
x,

arcsin
√

(1−c)/2

arcsin
√

(wδ)/2

)
,∣∣cos θ

(
FQ
x , F

Q
v

)∣∣ ⩾ c.

c) By the above discussion,

ρ2 = ‖FQ
x ‖2w =

∑
v∈V

w
∣∣FQ

x (v)
∣∣2

=
∑
v∈V

w
∣∣〈FQ

x , F
Q
v

〉
w

∣∣2 ⩾ w
∑
v∈B0

∣∣〈FQ
x , F

Q
v

〉
w

∣∣2
= w

∑
v∈B0

∣∣cos θ
(
FQ
x , F

Q
v

)∣∣2‖FQ
x ‖2w‖FQ

v ‖2w

⩾ wρ4c2N#
(arcsin

√
(1− c)/2

arcsin
√
wδ/2

)
.

Thus, we have
wρ2 ⩽ 1

c2N#
(

arcsin
√

(1−c)/2

arcsin
√

wδ/2

) .
Now, by Lemma 2.3,

µQ
x (δ) = w‖FQ

x ‖2w = wρ2 ⩽ 1

c2N#
(

arcsin
√

(1−c)/2

arcsin
√

wδ/2

) .
The first assertion is proved.
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d) Now we turn to the second assertion.
If (1− c) < wδ, then

N#
(√1− c√

wδ

)
= 1.

Therefore,
1

c2N#
(√

1−c√
wδ

) > 1.

But µQ
x (δ) ⩽ 1. So the second assertion holds in this case.

If (1 − c) ⩾ wδ, then
√
wδ/2 < 1. Thus, arcsin

√
wδ/2 is defined. Note that x

arcsinx
is

decreasing for x ∈ (0, 1). Therefore,√
(1− c)/2

arcsin
√

(1− c)/2
⩽

√
wδ/2

arcsin
√
wδ/2

.

Consequently, √
1− c√
wδ

⩽ arcsin
√
(1− c)/2

arcsin
√
wδ/2

.

Hence, the second assertion follows from the first one immediately.

By the bounds on vertex spectral measures in Theorem 6.2 and [LOG17, Theorem 6.1],
using the method as in Theorem 3.5, we may get a similar result as [LOG17, Corollary 6.6].

Corollary 6.3. Let G be a finite or infinite, vertex-transitive, d-regular, non-bipartite, simple,
connected, unweighted graph with at least polynomial growth rate N#(r) ⩾ CrD, where C > 0
and D ⩾ 1 are constants and 0 ⩽ r ⩽ diam(G). Then for each x ∈ V and t > 0,

0 ⩽ pt(x, x)− π(x) ⩽ 2C̃t−D/2 for t ≡ 0 mod 2,∣∣pt(x, x)− π(x)∣∣ ⩽ C̃t−D/2 for t ≡ 1 mod 2,

where C̃ = (D+4)D/2+2dD/2

32CDD/2−1 Γ
(
D
2

)
.

The proof of this corollary is omitted. An analogue of [LOG17, Corollary 6.7] could also
be written down easily.

6.2 Minimum Eigenvalue
For a connected, finite graph G and its signless probabilistic Laplacian Q = I + P , we

know that 0 is an eigenvalue of Q if and only if G is bipartite from Corollary 2.2.

Theorem 6.4. Let G be a vertex-transitive, non-bipartite, finite, simple, connected, weighted
graph with weight at least 1 for each edge. Then

λQmin ⩾ 2

w

(
sin π

4
(
diam(G) + 1

))2

.
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Theorem 6.4 is a partial analogue of the second assertion of [LOG17, Theorem 6.1].

Proof. We may assume λQ
min
2

< 1: otherwise, the inequality is trivial. Consider the spectral
embedding based on Q with δ = λQmin. Fix x ∈ V and let

S :=
{
s ∈ V ; f(s) ⩾ 0

}
, T :=

{
t ∈ V ; f(t) < 0

}
.

It is easy to see that both S and T are non-empty. Because G is assumed to be non-bipartite,
there exists an edge (s1, s2) ∈ E with s1, s2 ∈ S, or an edge (t1, t2) ∈ E with t1, t2 ∈ T .

a) If there is an edge (s1, s2) ∈ E with s1, s2 ∈ S, let P̂0 be a shortest path from x to
{s1, s2}. Without loss of generality, we may assume P̂0 is from x to s1. If |P̂0| is odd, we
set P̂ := P̂0; if |P̂0| is even, we set P̂ := P̂0.(s1, s2), the concatenation of P̂0 and the edge
(s1, s2). Hence, P̂ is a path of odd length in any case. Assume

P̂ = u0u1 · · · uk,

with u0 = x. We define

F̂i := (−1)iFQ
ui
, i = 0, 1, 2, . . . , k.

Then F̂0 = FQ
x and〈

F̂0, F̂k

〉
w
= (−1)k

〈
FQ
x , F

Q
uk

〉
w
= −

〈
FQ
x , F

Q
uk

〉
w
= −〈IQ(δ)1x/w, IQ(δ)1uk

/w
〉
w

= −〈IQ(δ)1x/w, 1uk
/w

〉
w
= −〈IQ(δ)1x/w, 1uk

〉
= −〈FQ

x ,1uk

〉
= −FQ

x (uk) ⩽ 0.

Hence,
π

2
⩽ θ

(
F̂0, F̂k

)
. (4)

In addition, using the sphere metric as in Eq. (3), we have

θ
(
F̂0, F̂k

)
⩽ 2k arcsin

√
wλQmin/2 ⩽ 2

(
diam(G) + 1

)
arcsin

√
wλQmin/2. (5)

Combining Eqs. (4) and (5),

π

2
⩽ 2

(
diam(G) + 1

)
arcsin

√
wλQmin/2.

So in this case,
λQmin ⩾ 2

w

(
sin π

4
(
diam(G) + 1

))2

.

b) If there is an edge (t1, t2) ∈ E with t1, t2 ∈ T , let P0 be a shortest path from x to
{t1, t2}. Without loss of generality, we may assume P0 is from x to t1. If |P0| is even, we
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set P := P0; if |P0| is odd, we set P := P0.(t1, t2). Thus, P is a path of even length in any
case. Assume

P = v0v1 · · · vℓ,

with v0 = x, and define

F i := (−1)iFQ
vi
, i = 0, 1, 2, . . . , ℓ.

Then F 0 = FQ
x and 〈

F 0, F ℓ

〉
w
= (−1)ℓ

〈
FQ
x , F

Q
vℓ

〉
w
= FQ

x (vℓ) < 0.

Hence, we have
π

2
< θ

(
F 0, F ℓ

)
. (6)

In addition, using the sphere metric as in Eq. (3) again, we have

θ
(
F 0, F r

)
⩽ 2ℓ arcsin

√
wλQmin/2 ⩽ 2

(
diam(G) + 1

)
arcsin

√
wλQmin/2. (7)

Combining Eqs. (6) and (7), we get

π

2
< 2

(
diam(G) + 1

)
arcsin

√
wλQmin/2.

So in this case,
λQmin >

2

w

(
sin π

4
(
diam(G) + 1

))2

.

7 Average Return Probability
In this section, we deal with the average spectral measure of Q and average return prob-

abilities for simple random walk on generic non-bipartite, simple, finite, connected graphs.
Our method is inspired by [LOG17, Section 5].

7.1 Estimate of Average Spectral Measure
Define average spectral measure of Q as

µQ(δ) :=
1

n

∑
x∈V

µQ
x (δ).

We also write µQ
S (δ) :=

∑
x∈S µ

Q
x (δ) for S ⊆ V .

Theorem 7.1. For any non-bipartite, finite, simple, connected, unweighted graph G and
δ ∈ (0, 2), we have

µQ(δ) < (4000δ)1/3.
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Theorem 7.1 is comparable to [LOG17, Theorem 5.1].

Corollary 7.2. For any non-bipartite, finite, simple, connected, unweighted graph G, we
have λQk ⩾ k3

4000n3 for 1 ⩽ k ⩽ n. Therefore, λPk ⩾ −1 + k3

4000n3 .

Proof. By the same argument as in the proof of Corollary 3.4, this corollary follows easily
from Lemma 3.3 and Theorem 7.1.

To prove Theorem 7.1, we need some preparation.
Let m :=

⌊
n
2
µQ(δ)

⌋
+ 1. For each x ∈ V , set

R(x) :=
{
y ∈ V ; ‖FQ

x − FQ
y ‖w ⩽ ‖F

Q
x ‖w
4

or ‖FQ
x + FQ

y ‖w ⩽ ‖F
Q
x ‖w
4

}
.

We will use Algorithm 1 to get some useful sets.

Algorithm 1 Set-Selection.
Let S0 ← V .
for i = 1→ m do

Choose a vertex xi in Si−1 that maximizes µQ
xi
(δ).

Let Si ← Si−1 \R(xi).
end for
return R(x1),R(x2), . . . ,R(xm).

For each x ∈ V , set

Ñ(x) :=
{
y ∈ N(x) ; ‖FQ

y + FQ
x ‖w ⩽ ‖F

Q
x ‖w
9

}
.

Let T̃ (x) be the star formed by x and Ñ(x). We pick T (x) as a maximal (with respect to
inclusion) connected bipartite graph including T̃ (x) such that

∀y ∈ V
(
T (x)

) ∥∥FQ
x − (−1)dist(x,y;T (x))FQ

y

∥∥
w
⩽ ‖F

Q
x ‖w
9

.

Lemma 7.3. Let G be a non-bipartite, finite, simple, connected, unweighted graph and
δ ⩾ λQmin.

(0) For i = 1, 2, . . . ,m, we have µQ
R(xi)

(δ) ⩽ 4
3
.

(1) For i = 1, 2, . . . ,m, we have µQ
xi
(δ) ⩾ µQ(δ)

3
. In addition, Algorithm 1 is well de-

signed: each Si−1 is non-empty and xi could be chosen for i = 1, 2, . . . ,m. Therefore,
Algorithm 1 is not stopping before i = m.

(2) For 1 ⩽ i < j ⩽ m, V (T (xi)) ∩ V (T (xj)) = ∅.

Lemma 7.3 plays a similar role to that of Lemma 5.2 in [LOG17].
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Proof. (0) Since δ ⩾ λQmin, we must have ‖FQ
xi
‖w > 0. By the proof of [LOG17, Lemma 3.13],

for any two non-zero vectors in a Hilbert space H,

<
〈 f

‖f‖H
,

g

‖g‖H

〉
H
⩾ 1− 2‖f − g‖2H

‖f‖2H
, (8)

where <z is the real part of a complex number z. Also, for y ∈ R(xi), by the construction
of R(xi), we have an integer σi(y) such that

∥∥FQ
xi
− (−1)σi(y)FQ

y

∥∥
w
⩽
‖FQ

xi
‖w

4
.

This implies ‖FQ
y ‖w > 0 for y ∈ R(xi).

Therefore,

1 =
∑

y∈R(xi)

w(y)‖FQ
y ‖2w

∣∣∣〈 FQ
y

‖FQ
y ‖w

,
FQ
xi

‖FQ
xi
‖w

〉
w

∣∣∣2
=

∑
y∈R(xi)

µQ
y (δ)

∣∣∣〈 (−1)σi(y)FQ
y

‖(−1)σi(y)FQ
y ‖w

,
FQ
xi

‖FQ
xi
‖w

〉
w

∣∣∣2
⩾

∑
y∈R(xi)

µQ
y (δ)

(
1−

2‖FQ
xi
− (−1)σi(y)FQ

y ‖2w
‖FQ

xi
‖2w

)2

⩾ µQ
R(xi)

(δ)
(
1− 2

16

)2

=
49

64
µQ

R(xi)
(δ),

where we use Eq. (8) to get the first inequality.
It follows that

µQ
R(xi)

(δ) ⩽ 64

49
<

4

3
.

(1) We know µQ
S0
(δ) = µQ

V (δ) = nµQ(δ). In addition, by assertion (0), the total spectral
measure of removed vertices in each iteration of the for loop in Algorithm 1 is at most 4

3
.

We have, for each i ⩽ m,

µQ
Si−1

(δ) ⩾ nµQ(δ)− 4

3
(m− 1) ⩾ nµQ(δ)

3
,

where the last inequality holds by the definition of m. This implies Si−1 6= ∅ and xi could
be chosen in Algorithm 1 for i = 1, 2, . . . ,m. In other words, the algorithm is well designed
and is not stopping before i = m.

Furthermore, since xi has the largest vertex spectral measure in Si−1 for i = 1, 2, . . . ,m,
we have

µQ
xi
(δ) ⩾

µQ
Si−1

(δ)

n
⩾
µQ
Sm−1

(δ)

n
⩾ µQ(δ)

3
.
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(2) Suppose that some vertex y lies in V
(
T (xi)

)
∩ V

(
T (xj)

)
. We deal with assertion (2)

in the following two cases. For ease of notation, we write τk := dist(xk, y;T (xk)) for k = i, j.
By the construction of T (xi) and T (xj),∥∥FQ

xk
− (−1)τkFQ

y

∥∥
w
⩽
‖FQ

xk
‖w

9
, k = i, j.

Case (a): ‖FQ
xj
‖w > 5

4
‖FQ

xi
‖w. In this case, we have∥∥FQ

y

∥∥
w
=

∥∥(−1)τjFQ
y

∥∥
w

⩾ 8

9

∥∥FQ
xj

∥∥
w
>

8

9
· 5
4

∥∥FQ
xi

∥∥
w

=
10

9

∥∥FQ
xi

∥∥
w
.

Thus, we have ∥∥(−1)τiFQ
y

∥∥
w
=

∥∥FQ
y

∥∥
w
>

10

9

∥∥FQ
xi

∥∥
w
.

This contradicts our assumption that y ∈ V
(
T (xi)

)
.

Case (b): ‖FQ
xj
‖w ⩽ 5

4
‖FQ

xi
‖w. In this case, we have∥∥FQ

xi
− (−1)τi+τjFQ

xj

∥∥
w
=

∥∥FQ
xi
− (−1)τiFQ

y + (−1)τiFQ
y − (−1)τi+τjFQ

xj

∥∥
w

⩽
∥∥FQ

xi
− (−1)τiFQ

y

∥∥
w
+
∥∥(−1)τiFQ

y − (−1)τi+τjFQ
xj

∥∥
w

=
∥∥FQ

xi
− (−1)τiFQ

y

∥∥
w
+
∥∥FQ

xi
− (−1)τjFQ

y

∥∥
w

⩽
‖FQ

xi
‖w

9
+
‖FQ

xj
‖w

9
⩽

(1
9
+

1

9
· 5
4

)
‖FQ

xi
‖w

=
‖FQ

xi
‖w

4
.

Thus, xj ∈ R(xi). But this is impossible.
Therefore, we may conclude that V (T (xi)) ∩ V (T (xj)) = ∅.

For a subset E ′ ⊆ E(G) and a mapping F : V → H to a Hilbert space H, we define
energy

Ẽ(E ′) :=
∑

(x,y)∈E′

‖Fx + Fy‖2H.

For S ⊆ V , let E(S) be the collection of edges that are incident with the vertices in S. We
define the energy of S as Ẽ(S) := Ẽ

(
E(S)

)
.

Lemma 7.4. Assume that the graph G is a non-bipartite, finite, simple, connected, un-
weighted graph. When δ ⩾ λQmin, for 1 ⩽ i ⩽ m,

Ẽ
(
V (T (xi))

)
>

µQ(δ)

250
∣∣V (T (xi))

∣∣2 .
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Lemma 7.4 plays a similar role to that of Lemma 5.3 in [LOG17].

Proof. a) We first consider the case w(xi) >
∣∣V (T (xi))

∣∣. Recall that w(xi) equals the degree
of xi, since we are considering unweighted graphs. In this case,

Ẽ
(
V (T (xi))

)
⩾

∑
y∈N(xi)\V (T (xi))

‖FQ
xi
+ FQ

y ‖2w

>
∣∣N(xi) \ V (T (xi))

∣∣ · ‖FQ
xi
‖2w

81

=
∣∣N(xi) \ V (T (xi))

∣∣ · µQ
xi
(δ)

81w(xi)

>
(
w(xi)−

∣∣V (T (xi))
∣∣+ 1

) µQ(δ)

250w(xi)

⩾ µQ(δ)

250
∣∣V (T (xi))

∣∣2 ,
where the second inequality holds because V (T (xi)) ⊇ Ñ(xi), and the third inequality holds
thanks to Lemma 7.3(1).

b) We now turn to the case w(xi) ⩽
∣∣V (T (xi))

∣∣. In this case, we claim that there must
be a path z0z1 · · · zℓ, such that ℓ ⩽

∣∣V (T (xi))
∣∣, z0 = xi, and

∥∥FQ
xi
− (−1)ℓFQ

zℓ

∥∥
w
>
‖FQ

xi
‖w

9
.

In fact, if V
(
T (xi)

)
is a proper subset of V , there is a vertex y ∈ V \ V (T (xi)) with

dist
(
y, T (xi);G

)
= 1. Let z0z1 · · · zℓ be a path joining z0 := xi and zℓ := y, with z0z1 · · · zℓ−1

being a path in T (xi). Because T (xi) is assumed maximal and y /∈ V
(
T (xi)

)
, we must have

∥∥FQ
xi
− (−1)ℓFQ

zℓ

∥∥
w
>
‖FQ

xi
‖w

9
.

If V
(
T (xi)

)
= V , since T (xi) is assumed to be a maximal connected bipartite graph and

G is a connected non-bipartite graph, there must be an edge e = (u, v), whose addition to
T (xi) results in an odd cycle. To be specific, we have

dist
(
xi, u;T (xi)

)
≡ dist

(
xi, v;T (xi)

)
mod 2.

Write τ := dist
(
xi, u;T (xi)

)
. Then

∥∥FQ
xi
− (−1)τFQ

u

∥∥
w
⩽
‖FQ

xi
‖w

9
.

This implies ∥∥FQ
xi
− (−1)τ+1FQ

u

∥∥
w
>
‖FQ

xi
‖w

9
. (9)
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In fact, if otherwise
∥∥FQ

xi
− (−1)τ+1FQ

u

∥∥
w
⩽ ∥FQ

xi
∥w

9
, then∥∥2FQ

xi

∥∥
w
=

∥∥FQ
xi
− (−1)τFQ

u + FQ
xi
− (−1)τ+1FQ

u

∥∥
w
<

(1
9
+

1

9

)∥∥FQ
xi

∥∥
w
.

Therefore,
∥∥FQ

xi

∥∥
w
= 0. But

∥∥FQ
xi

∥∥
w
6= 0 for δ ⩾ λQmin.

Now pick a shortest path z0z1 · · · zℓ−1 joining xi and v in T (xi), where z0 = xi and
zℓ−1 = v. Let zℓ = u. Then z0z1 · · · zℓ−1zℓ is a path joining xi and u. Hence, by our
assumption,

ℓ− 1 ≡ τ mod 2.

Therefore, Eq. (9) can be written as∥∥FQ
xi
− (−1)ℓFQ

zℓ

∥∥
w
>
‖FQ

xi
‖w

9
.

Our claim is proved. By the claim, we have

Ẽ
(
V (T (xi))

)
⩾

ℓ−1∑
k=0

‖FQ
zk
+ FQ

zk+1
‖2w =

ℓ−1∑
k=0

‖(−1)kFQ
zk
− (−1)k+1FQ

zk+1
‖2w

⩾ 1

ℓ

( ℓ−1∑
k=0

‖(−1)kFQ
zk
− (−1)k+1FQ

zk+1
‖w

)2

⩾ 1

ℓ
‖FQ

z0
− (−1)ℓFQ

zℓ
‖2w

>
1

ℓ
· 1
81
‖FQ

xi
‖2w ⩾ 1∣∣V (T (xi))

∣∣ · ‖FQ
xi
‖2w

81

=
1∣∣V (T (xi))

∣∣ · µQ
xi
(δ)

81w(xi)
>

1∣∣V (T (xi))
∣∣ · µQ(δ)

250w(xi)

⩾ µQ(δ)

250
∣∣V (T (xi))

∣∣2 ,
where the sixth inequality follows from Lemma 7.3(1), and the last inequality holds thanks
to our assumption that w(xi) ⩽

∣∣V (T (xi))
∣∣. The proof is complete.

Proof of Theorem 7.1. To begin, we claim that

δ ⩾
∑

(y,z)∈E(G)‖FQ
y + FQ

z ‖2w∑
x∈V ‖FQ

x ‖2ww(x)
.

This can be proved exactly in the same way as [LOG17, Lemma 3.14]. In fact, for all x, y ∈ V ,
FQ
x (y) =

〈
IQ(δ)1x/w(x),1y

〉
=

〈
IQ(δ)1x/w(x),1y/w(y)

〉
w
= FQ

y (x).

Therefore, using Lemma 2.1, we have∑
(y,z)∈E(G)

w(y, z)‖FQ
y + FQ

z ‖2w =
∑

(y,z)∈E(G)

w(y, z)
∑
x∈V

w(x)
∣∣(FQ

y + FQ
z

)
(x)

∣∣2
=

∑
(y,z)∈E(G)

w(y, z)
∑
x∈V

w(x)
∣∣FQ

x (y) + FQ
x (z)

∣∣2.
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Proceeding further, we get that∑
(y,z)∈E(G)

w(y, z)‖FQ
y + FQ

z ‖2w =
∑
x∈V

w(x)
∑

(y,z)∈E(G)

w(y, z)
∣∣FQ

x (y) + FQ
x (z)

∣∣2
=

∑
x∈V

w(x)〈FQ
x ,QFQ

x 〉w

⩽
∑
x∈V

δ w(x)‖FQ
x ‖2w.

The claim is thus proved.
Now we assume δ ⩾ λQmin without loss of generality. Since for different i and j,

V (T (xi)) ∩ V (T (xj)) = ∅,

we have
∑m

i=1

∣∣V (T (xi))
∣∣ ⩽ n. Therefore,

δ ⩾
∑

(x,y)∈E(G)‖FQ
x + FQ

y ‖2w∑
y∈V ‖FQ

y ‖2ww(y)
⩾ 1

nµQ(δ)
· 1
2

m∑
i=1

Ẽ
(
V
(
T (xi)

))
>

1

2nµQ(δ)

m∑
i=1

µQ(δ)

250
∣∣V (T (xi))

∣∣2 ⩾ m3

500n3
⩾ µQ(δ)3

4000
,

where the second inequality follows by Lemma 2.3 and the fact that each edge is counted in
at most two sets T (xi) for energy, the fourth inequality follows by convexity of the function
s 7→ 1/s2, and the last inequality holds because m ⩾ nµQ(δ)/2. The proof of Theorem 7.1
is complete.

7.2 Average Return Probability
Using Theorem 7.1, we can bound average return probabilities. Theorems 7.5 and 7.6

together are comparable to [LOG17, Corollary 5.4].
Theorem 7.5. Let G be a non-bipartite, finite, simple, connected, unweighted graph. Then
for t ≡ 0 mod 2, we have

0 ⩽
∑

x∈V pt(x, x)− 1

n
⩽ 30

t1/3
.

Proof. Set

Φ(λ) :=


n

3
√
4000λ if λ ⩾ 0 and n 3

√
4000λ ⩽ nµ∗(1),

nµ∗(1) for intermediate values of λ,
n− 1− n 3

√
4000(2− λ) if λ ⩽ 2 and n− 1− n 3

√
4000(2− λ) ⩾ nµ∗(1).

Then as in the proof of Theorem 3.5, by Theorem 7.1 and [LOG17, Theorem 5.1],
Φ(0) = 0, Φ(2) = n− 1,

nµ∗(λ) ⩽ Φ(λ) for λ ∈ [0, 1],

nµ∗(λ) ⩾ Φ(λ) for λ ∈ [1, 2].
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Therefore, by our calculation in part a) of the proof of Lemma 2.7, for t ≡ 0 mod 2,

∑
x∈V

pt(x, x) =
∑
x∈V

(
π(x) +

(
1− π(x)

))
+ t

∫ 2

0

(∑
x∈V

µ∗
x(λ)

)
(1− λ)t−1 dλ

= n+ t

∫ 2

0

nµ∗(λ)(1− λ)t−1 dλ ⩽ n+ t

∫ 2

0

Φ(λ)(1− λ)t−1 dλ

= n− (n− 1) +

∫ 2

0

(1− λ)tΦ′(λ) dλ = 1 +

∫ 2

0

(1− λ)tΦ′(λ) dλ

⩽ 1 + 2

∫ 1

0

(1− λ)tn
3
√
4000

3
λ−2/3 dλ

⩽ 1 +
30n

t1/3
,

where we are using Lemma 2.6 to get the third equality, and the last inequality holds by
Lemma A.2 in the appendix. Therefore,∑

x∈V pt(x, x)− 1

n
⩽ 30

t1/3
.

On the other hand, for all x ∈ V and even t, pt(x, x) ⩾ π(x). Hence, we have∑
x∈V pt(x, x)− 1

n
⩾ 0.

Theorem 7.6. Let G be a non-bipartite, finite, simple, connected, unweighted graph. Then
for t ≡ 1 mod 2, ∣∣∑

x∈V pt(x, x)− 1
∣∣

n
⩽ 15

t1/3
.

Proof. a) Let t ≡ 1 mod 2. By our calculation in part a) of the proof of Lemma 2.7,

∑
x∈V

pt(x, x) =
∑
x∈V

(
π(x)−

(
1− π(x)

))
+ t

∫ 2

0

(∑
x∈V

µ∗
x(λ)

)
(1− λ)t−1 dλ

= 2− n+ t

∫ 2

0

nµ∗(λ)(1− λ)t−1 dλ.

b) Set
Ψ1(λ) :=

(
n− 1− n 3

√
4000(2− λ)

)
∨ 0.

Then by Theorem 7.1,

Ψ1(0) = 0, Ψ1(2) = n− 1,∑
x∈V

µ∗
x(λ) ⩾ Ψ1(λ) for λ ∈ [0, 2].
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By our calculation in part a),

∑
x∈V

pt(x, x) ⩾ 2− n+ t

∫ 2

0

Ψ1(λ)(1− λ)t−1 dλ

= 2− n+ (n− 1) +

∫ 2

0

(1− λ)tΨ′
1(λ) dλ = 1 +

∫ 2

0

(1− λ)tΨ′
1(λ) dλ

⩾ 1−
∫ 1

0

(1− λ)tn
3
√
4000

3
λ−2/3 dλ ⩾ 1− 15n

t1/3
,

where the first equality holds thanks to Lemma 2.6, and the last inequality follows from
Lemma A.2 in the appendix.

c) Set
Ψ2(λ) :=

(
n

3
√
4000λ

)
∧ (n− 1).

Then by [LOG17, Theorem 5.1],

Ψ2(0) = 0, Ψ2(2) = n− 1,∑
x∈V

µ∗
x(λ) ⩽ Ψ2(λ) for λ ∈ [0, 2].

Using a similar argument as in b), we get∑
x∈V

pt(x, x) ⩽ 1 +
15n

t1/3
.

7.3 Sum of Eigenvalue Powers in Absolute Value
Since similar matrices have the same trace, we have∑

x∈V pt(x, x)− 1

n
=

∑n
i=1(λ

P
i )

t − 1

n
=

1

n

n−1∑
i=1

(λPi )
t.

Therefore, when t ⩾ 2 is even, Theorem 7.5 gives

1

n

n−1∑
i=1

|λPi |t =
∑

x∈V pt(x, x)− 1

n
⩽ 30

t1/3
. (10)

For odd t, we have ∣∣∣∑
x∈V

pt(x, x)− 1
∣∣∣ = ∣∣∣n−1∑

i=1

(λPi )
t
∣∣∣ ⩽ n−1∑

i=1

|λPi |t.

Theorem 7.6 will not give a bound on
∑n−1

i=1 |λPi |t directly for odd t. But we can still make a
detour and bound

∑n−1
i=1 |λPi |t by Theorem 7.5 as follows.
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Proposition 7.7. Let G be a non-bipartite, finite, simple, connected, unweighted graph. We
have

1

n

n−1∑
i=1

|λPi |t ⩽
30

t1/3
for t ≡ 0 mod 2 and t ⩾ 2,

1

n

n−1∑
i=1

|λPi |t ⩽
30

6
√
t2 − 1

for t ≡ 1 mod 2 and t ⩾ 3.

The bound in Theorem 7.6 is 15
t1/3

; we get the bound 30
(t2−1)1/6

for odd t in Proposition 7.7.
These two bounds are not far apart: they are of the same order in t.

Proof of Proposition 7.7. The assertion for even t is nothing but Eq. (10). We now consider
odd t. When t ⩾ 3 is odd, by Eq. (10),

n−1∑
i=1

|λPi |t =
n−1∑
i=1

(
|λPi |

t−1
2 |λPi |

t+1
2

)1/2 ⩽ (n−1∑
i=1

|λPi |t−1
)1/2(n−1∑

i=1

|λPi |t+1
)1/2

⩽
( 30n

3
√
t− 1

)1/2( 30n
3
√
t+ 1

)1/2

=
30n

6
√
t2 − 1

,

where the first inequality holds thanks to the Cauchy–Schwarz inequality.

8 Bipartite Case
Now we deal with bipartite graphs. On bipartite graphs, simple random walk has period

two. We have the following result on return probabilities, whose proof uses only the bound
on the vertex spectral measure of L from [LOG17, Theorem 4.9].

Theorem 8.1. Consider a regular, bipartite, simple, connected, unweighted graph G. For
each x ∈ V , simple random walk on G satisfies

0 ⩽ pt(x, x)− 2π(x) ⩽ 18√
t

for t ≡ 0 mod 2.

To prove Theorem 8.1, we don’t need to get a bound on the vertex spectral measure of
Q as we did in Section 3, because the following lemma gives us a relation between the vertex
spectral measures of L and Q.

Lemma 8.2 (Mohar and Woess, 1989, Theorem 4.8). If G is bipartite, the spectrum of
P is symmetric with respect to zero. For each x ∈ V , the vertex spectral measure of P ,〈
IP (dδ)ex, ex

〉
w

, is symmetric with respect to 0. As a consequence, if G is bipartite, for each
x ∈ V and δ ∈ [0, 2], µx(δ) = µQ

x (δ).
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Proof of Theorem 8.1. a) Set

µ#
x (λ) :=

{
µ∗
x(λ) if 0 ⩽ λ < 2,

1− 2π(x) if λ = 2,

and

φ#(λ) :=


10
√
λ if λ ⩾ 0 and 10

√
λ ⩽ µ#

x (1),
µ#
x (1) for intermediate values of λ,
µ#
x (2)− 10

√
2− λ if λ ⩽ 2 and µ#

x (2)− 10
√
2− λ ⩾ µ#

x (1).

Then φ#(0) = µ#
x (0) = 0, φ#(2) = µ#

x (2) = 1 − 2π(x). In addition, by Lemma 8.2 and
[LOG17, Theorem 4.9], we have

µ#
x (λ) ⩽ φ#(λ) for λ ∈ [0, 1],

µ#
x (λ) ⩾ φ#(λ) for λ ∈ [1, 2].

b) Now let t be a positive even number. We have

pt(x, x) =

∫
[0,2]

(1− λ)t µx(dλ)

= 2π(x) +

∫
[0,2]

(1− λ)t µ#
x (dλ).

(11)

Hence, we see that
pt(x, x)− 2π(x) =

∫
[0,2]

(1− λ)t µ#
x (dλ) ⩾ 0.

c) On the other hand,

pt(x, x) = 2π(x) +

∫
[0,2]

(1− λ)t µ#
x (dλ)

= 2π(x) + (1− λ)tµ#
x (λ)

∣∣2
0
−
∫ 2

0

µ#
x (λ) d(1− λ)t

= 2π(x) +
(
1− 2π(x)

)
+ t

∫ 2

0

µ#
x (λ)(1− λ)t−1 dλ

⩽ 1 + t

∫ 2

0

φ#(λ)(1− λ)t−1 dλ = 1− φ#(2) +

∫ 2

0

(1− λ)t(φ#)′(λ) dλ

= 2π(x) +

∫ 2

0

(1− λ)t(φ#)′(λ) dλ = 2π(x) + 2

∫ 1

0

(1− λ)t(φ#)′(λ) dλ

⩽ 2π(x) + 2

∫ 1

0

5(1− λ)t√
λ

dλ = 2π(x) + 10

∫ 1

0

(1− λ)t√
λ

dλ

⩽ 2π(x) +
18√
t
,
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where the fourth equality follows from Lemma 2.6, and we use Lemma A.1 to get the last
inequality.

d) Summing up the above discussion, we get, for x ∈ V and t ≡ 0 mod 2,

0 ⩽ pt(x, x)− 2π(x) ⩽ 18√
t
.

Theorem 8.1 is an example of treating simple random walk on bipartite graphs. Using
the same method, one may get parallel results to what we had in previous sections. For
instance, the following Corollary 8.3 is parallel to Corollary 6.3.

Corollary 8.3. Let G be a finite or infinite, vertex-transitive, d-regular, bipartite, simple,
connected, unweighted graph with at least polynomial growth rate N#(r) ⩾ CrD, where C > 0
and D ⩾ 1 are constants and 0 ⩽ r ⩽ diam(G). Then for each x ∈ V and t ≡ 0 mod 2,

0 ⩽ pt(x, x)− 2π(x) ⩽ 2C̃t−D/2,

where C̃ = (D+4)D/2+2dD/2

32CDD/2−1 Γ
(
D
2

)
.

Note that the rate t−D/2 here is the correct decay rate for the simple random walk on
ZD, D ∈ N. To prove Corollary 8.3, one need only follow our argument in the proof of
Theorem 8.1 and use the bound on the vertex spectral measure of L obtained in [LOG17,
Theorem 6.1]. Details are omitted.

9 Combinatorial Signless Laplacian
We used spectral embedding to deal with random walk on graphs in previous sections.

In fact, this tool is also powerful in analyzing the spectrum of graph adjacency matrices.
Assume that G is a weighted finite graph. Let ℓ2(V ) be the Hilbert space of functions

f : V → R or C with inner product

〈f, g〉 :=
∑
x∈V

f(x)g(x)

and squared norm ‖f‖2 := 〈f, f〉. Let W be the diagonal weight matrix of the graph G:
W := diag(w(x) ; x ∈ V ). Then it is easy to see that the combinatorial signless Laplacian
Θ := W+A is a bounded self-adjoint operator on ℓ2(V ). We denote the resolution of identity
for Θ as IΘ and define the vertex spectral measure of Θ at x ∈ V as

µΘ
x (δ) := 〈IΘ

(
[0, δ]

)
1x,1x〉, δ ⩾ 0.

For ease of notation, we also write IΘ(δ) := IΘ
(
[0, δ]

)
for δ ⩾ 0.
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Lemma 9.1. For f ∈ ℓ2(V ), we have

〈Θf, f〉 =
∑

(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2.
Therefore, the spectrum of Θ is non-negative. Moreover, if f ∈ img

(
IΘ(δ)

)
for some δ ⩾ 0,

then 〈Θf, f〉 ⩽ δ‖f‖2.

See the appendix for a proof.
For δ ⩾ 0, we define the spectral embedding based on Θ as

FΘ : V → ℓ2(V )

x 7→ FΘ
x := IΘ(δ)1x.

It is clear that FΘ
x is a real-valued function on V for each x ∈ V .

Lemma 9.2. For each finite graph G and x ∈ V ,∥∥FΘ
x

∥∥2
= FΘ

x (x) = µΘ
x (δ).

Proof. Since IΘ(δ) is a self-adjoint projection operator on ℓ2(V ), we see that∥∥FΘ
x

∥∥2
= 〈FΘ

x , F
Θ
x 〉 = 〈IΘ(δ)1x, IΘ(δ)1x〉 = 〈IΘ(δ)1x,1x〉.

By the definition of the vertex spectral measure of Θ, we see that 〈IΘ(δ)1x,1x〉 = µΘ
x (δ).

Moreover, since IΘ(δ)1x = FΘ
x , we have 〈IΘ(δ)1x,1x〉 = FΘ

x (x).

Lemma 9.3. If µΘ
x (δ) > 0, define f : V → C as f := FΘ

x

∥FΘ
x ∥ . We have

(1) ‖f‖ = 1;

(2) f(x) =
√
µΘ
x (δ);

(3) f ∈ img
(
IΘ(δ)

)
.

Proof. The first and third assertions are obvious. As for the second assertion, by Lemma 9.2,

f(x) =
FΘ
x (x)

‖FΘ
x ‖

=
µΘ
x (δ)√
µΘ
x (δ)

=
√
µΘ
x (δ).

We are now in position to present bounds on vertex spectral measures. Denote the
eigenvalues of the combinatorial signless Laplacian Θ on G as

0 ⩽ λΘmin = λΘ1 ⩽ λΘ2 ⩽ λΘ3 ⩽ · · · ⩽ λΘn−1 < λΘn = λΘmax.

Recall that K (G) is defined in Definition 5.1; Lemma 5.2 shows that K (G) ⩾ 1
diam(G)+1

when G is non-bipartite.
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Proposition 9.4. Let G be a non-bipartite, finite, simple, connected, weighted graph with
weight at least 1 for each edge. Then for each δ ∈ [0, λΘmax) and x ∈ V , we have

µΘ
x (δ) ⩽

δ

K (G)
⩽

(
diam(G) + 1

)
δ.

Proof. This proof is a mimic of the proof of Lemma 5.3. Fixing a vertex x ∈ V , we define f
as in Lemma 9.3.

When 0 ⩽ δ < λΘmin, µΘ
x (δ) = 0 by definition. So the inequality holds automatically.

When λΘmin ⩽ δ < λΘmax, we know that f is orthogonal to the eigenspace of Θ corresponding
to λΘmax, which is spanned by a positive vector according to the Perron–Frobenius theorem.
By Definition 5.1, we have

δ ⩾ 〈f,Θf〉 =
∑

(v,u)∈E

w(v, u)|f(v) + f(u)|2 ⩾ f(x)2K (G) = µΘ
x (δ)K (G).

In order to get a lower bound on eigenvalues of Θ from Proposition 9.4, we need the
following Lemma 9.5.

Lemma 9.5. Let G be a finite, connected, weighted graph. We have∑
x∈V

µΘ
x (δ) =

∣∣{j ; λΘj ⩽ δ}
∣∣.

Proof. Note that ∑
x∈V

µΘ
x (δ) =

∑
x∈V

〈
IΘ(δ)1x,1x

〉
.

This is the trace of IΘ(δ), which equals the dimension of its image. Therefore, we have∑
x∈V

µΘ
x (δ) =

∣∣{j ; λΘj ⩽ δ}
∣∣.

Corollary 9.6. Let G be a non-bipartite, finite, simple, connected, weighted graph with
weight at least 1 for each edge. For 1 ⩽ k ⩽ n, we have

λΘk ⩾ kK (G)

n
⩾ k(

diam(G) + 1
)
n
.

Proof. By Proposition 9.4, ∑
x∈V

µΘ
x (δ) ⩽

∑
x∈V

δ

K (G)
=

nδ

K (G)
.

Hence, Lemma 9.5 gives ∣∣{j ; λΘj ⩽ δ}
∣∣ ⩽ nδ

K (G)
.

Therefore, we must have λΘk ⩾ kK (G)
n

.
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For the adjacency matrix A of G, we denote its eigenvalues as

−wmax ⩽ λAmin = λA1 ⩽ λA2 ⩽ λA3 ⩽ · · · ⩽ λAn−1 < λAn = λAmax ⩽ wmax,

where wmax := maxx∈V w(x). The following Corollary 9.7 improves [Alon and Sudakov, 2000,
Theorem 1.1], which obtained that dmax + λA1 ⩾ 1

(diam(G)+1)n
for unweighted graphs.

Corollary 9.7. Let G be a non-bipartite, finite, simple, connected, weighted graph with
weight at least 1 for each edge. For 1 ⩽ k ⩽ n, we have

wmax + λAk ⩾ kK (G)

n
⩾ k(

diam(G) + 1
)
n
.

Proof. Let X1 be the linear subspace of ℓ2(V ) spanned by the eigenvectors of A corresponding
to λA1 , λA2 , . . ., λAk , and X2 be the linear subspace of ℓ2(V ) spanned by the eigenvectors of Θ
corresponding to λΘk , λΘk+1, . . ., λΘn . Then

dimX1 ⩾ k, dimX2 ⩾ n− k + 1.

It follows that
dimX1 + dimX2 > n = dim ℓ2(V ).

Therefore, the intersection of X1 and X2 contains a non-zero vector h of unit norm. Hence,

kK (G)

n
⩽ λΘk ⩽ (Θh, h) = (Wh, h) + (Ah, h) ⩽ wmax + λAk .

Remark. The combinatorial signless Laplacian is also related to line graphs. Let ρ1 ⩾ ρ2 ⩾
· · · ⩾ ρr be the positive combinatorial signless Laplacian eigenvalues of G. Then by [Brouwer
and Haemers, 2012, Proposition 1.4.1], the eigenvalues of the line graph of G are

θi = ρi − 2, i = 1, 2, . . . , r,

θi = −2, i = r + 1, r + 2, . . . , |E(G)|.

Using this relation and Corollary 9.6, one may do some quick analysis on the spectrum of
the line graph of G.
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A Appendix
A.1 Miscellaneous Lemmas and Proofs

In the proof of Theorem 3.5, the following elementary calculation is needed.

Lemma A.1. For t > 0, we have∫ 1

0

(1− λ)t 1√
λ

dλ ⩽ 9

5
√
t
.

Proof. We have∫ 1

0

(1− λ)t 1√
λ

dλ ⩽
∫ 1

0

exp{−λt}λ−1/2 dλ ⩽
∫ ∞

0

exp{−λt}λ−1/2 dλ.

Taking a change of variable λt = s, we get that∫ ∞

0

e−s(s/t)−1/2 d(s/t) ⩽ 1√
t

∫ ∞

0

e−ss−1/2 ds

=
Γ(1/2)√

t
⩽ 9

5
√
t
.

Hence, the inequality follows immediately.

Lemma A.2 is useful in the proofs of Theorems 7.5 and 7.6.

Lemma A.2. For t > 0, we have

3
√
4000

3

∫ 1

0

(1− λ)tλ−2/3 dλ ⩽ 15

t1/3
.

Proof. We have ∫ 1

0

(1− λ)tλ−2/3 dλ ⩽
∫ ∞

0

exp{−λt}λ−2/3 dλ.

Taking λt = s, we get∫ ∞

0

exp{−λt}λ−2/3 dλ =

∫ ∞

0

e−s(s/t)−2/3 d(s/t)

=
1

t1/3

∫ ∞

0

e−ss−2/3 ds = Γ(1/3)

t1/3
.

Therefore,
3
√
4000

3

∫ 1

0

(1− λ)tλ−2/3 dλ ⩽
3
√
4000 Γ(1/3)

3t1/3
⩽ 15

t1/3
.
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Proof of Lemma 2.1. We need prove the first assertion only. First, we claim that∑
v,u∈V

w(v, u)|f(v)||f(v) + f(u)| <∞.

In fact, we have∑
v,u∈V

w(v, u)|f(v)||f(v) + f(u)| ⩽
∑
v,u∈V

w(v, u)
(
|f(v)|2 + |f(v)||f(u)|

)
=

∑
v,u∈V

w(v, u)|f(v)|2 +
∑
v,u∈V

w(v, u)|f(v)||f(u)|.

By the Cauchy–Schwarz inequality, we may proceed and get∑
v,u∈V

w(v, u)|f(v)||f(v) + f(u)| ⩽
∑
v,u∈V

w(v, u)|f(v)|2

+
( ∑
v,u∈V

w(v, u)|f(v)|2
)1/2( ∑

v,u∈V

w(v, u)|f(u)|2
)1/2

=
∑
v,u∈V

w(v, u)|f(v)|2 +
∑
v,u∈V

w(v, u)|f(v)|2

= 2
∑
v,u∈V

w(v, u)|f(v)|2 = 2
∑
v∈V

|f(v)|2
∑
u∈V

w(v, u)

= 2
∑
v∈V

|f(v)|2w(v) = 2‖f‖w <∞.

The claim is proved. By this claim, using Fubini’s theorem, we have

∑
v,u∈V

w(v, u)f(v)
(
f(v) + f(u)

)
=

∑
v∈V

f(v)
∑
u∈V

w(v, u)
(
f(v) + f(u)

)
=

∑
v∈V

w(v)f(v)
(
f(v) +

∑
u∈V

p(v, u)f(u)
)

=
∑
v∈V

w(v)f(v)
(
(I + P )f

)
(v) = 〈f, (I + P )f〉w

= 〈f,Qf〉w.

By interchanging u and v, we have∑
v,u∈V

w(v, u)f(u)
(
f(v) + f(u)

)
= 〈f,Qf〉w.
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Therefore,∑
(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2 = 1

2

∑
v,u∈V

w(v, u)
∣∣f(v) + f(u)

∣∣2
=

1

2

( ∑
v,u∈V

w(v, u)f(v)
(
f(v) + f(u)

)
+

∑
v,u∈V

w(v, u)f(u)
(
f(v) + f(u)

))
= 1

2

(
〈f,Qf〉w + 〈f,Qf〉w

)
= 〈f,Qf〉w.

Proof of Lemma 9.1. We need to prove the first assertion only. Notice that∑
v,u∈V

w(v, u)f(v)
(
f(v) + f(u)

)
=

∑
v∈V

f(v)
∑
u∈V

w(v, u)f(v) +
∑
v∈V

f(v)
∑
u∈V

w(v, u)f(u)

=
∑
v∈V

f(v)w(v)f(v) +
∑
v∈V

f(v)(Af)(v)

= 〈f,Wf〉+ 〈f, Af〉
= 〈f,Θf〉.

By interchanging u and v, we have∑
v,u∈V

w(v, u)f(u)
(
f(v) + f(u)

)
= 〈f,Θf〉.

Therefore,∑
(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2
=

1

2

( ∑
v,u∈V

w(v, u)f(v)
(
f(v) + f(u)

)
+

∑
v,u∈V

w(v, u)f(u)
(
f(v) + f(u)

))
= 1

2

(
〈f,Θf〉+ 〈f,Θf〉

)
= 〈f,Θf〉.

A.2 Return Probability Bound Involving Relaxation Time
In this part, we consider finite graphs only. We use essentially a similar method to

[Oliveira and Peres, 2019]; yet the negative spectrum of P is also considered. Let G be
a non-bipartite, finite, simple, connected, unweighted graph. Then λPmin = λP1 > −1. Set
Λ := |λP1 | ∨ |λPn−1|, trel := (1− Λ)−1, t′ := 2dtrel/2e − 2.

Theorem A.3. Let G be a non-bipartite, finite, simple, connected, unweighted graph. For
t ⩾ 0, simple random walk on G satisfies∣∣pt(x, x)− π(x)∣∣ < 20d(x)

√
trel + 1

(t+ 1)dmin
.
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Theorem A.3 is analogous to [Oliveira and Peres, 2019, Theorem 1.2]. To prove The-
orem A.3, we need some preparation. Recall that the hitting time of A ⊆ V is τA := inf{t ⩾
0 ; Xt ∈ A} and Green’s function is

gt(x, y) :=
t∑

s=0

pt(x, y), t ⩾ 0, x, y ∈ V.

Lemma A.4. For t ≡ 0 mod 2 and x ∈ V , we have

0 ⩽ pt(x, x)− π(x) ⩽
1

1− e−1
· gt

′(x, x)
t
2
+ 1

.

Proof. By Eq. (1), for t ≡ 0 mod 2, pt(x, x) − π(x) is nonnegative and decreasing in t.
Therefore, we have

0 ⩽ pt(x, x)− π(x) ⩽
1

t
2
+ 1

( t/2∑
s=0

p2s(x, x)− ( t
2
+ 1)π(x)

)
. (A.1)

In addition,

t/2∑
s=0

p2s(x, x)− ( t
2
+ 1)π(x) =

t/2∑
s=0

∫
(−1,1)

λ2s ‖IP (dλ)ex‖2w =

∫
(−1,1)

( t/2∑
s=0

λ2s
)
‖IP (dλ)ex‖2w

=

∫
(−1,1)

1− λt+2

1− λ2
‖IP (dλ)ex‖2w

⩽
∫
(−1,1)

1

1− λ2
‖IP (dλ)ex‖2w,

(A.2)

where IP is the resolution of identity for P .
On the other hand, since for 1 ⩽ i ⩽ n,

(λPi )
t′+2 ⩽ Λt′+2 ⩽ Λ1/(1−Λ) ⩽ e−1,

we have∫
(−1,1)

1− e−1

1− λ2
‖IP (dλ)ex‖2w ⩽

∫
(−1,1)

1− λt′+2

1− λ2
‖IP (dλ)ex‖2w

=

t′/2∑
s=0

p2s(x, x)− ( t
′

2
+ 1)π(x) ⩽

t′/2∑
s=0

p2s(x, x)

⩽ gt′(x, x).

(A.3)
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By Eqs. (A.1) to (A.3),

0 ⩽ pt(x, x)− π(x) ⩽
1

t
2
+ 1

( t/2∑
s=0

p2s(x, x)− ( t
2
+ 1)π(x)

)
⩽ 1

t
2
+ 1

∫
(−1,1)

1

1− λ2
‖IP (dλ)ex‖2w

=
1

( t
2
+ 1)(1− e−1)

∫
(−1,1)

1− e−1

1− λ2
‖IP (dλ)ex‖2w

⩽ 1

( t
2
+ 1)(1− e−1)

gt′(x, x).

Lemma A.4 is proved.

Proposition A.5. We have
trel <

24n2davg

dmin
.

Proof. a) Suppose G = (V,E). We construct an auxiliary graph G̃ = (Ṽ , Ẽ) as follows:

(1) Let V ′ = {x′ ; x ∈ V } be a copy of V . The vertex set of G̃ is Ṽ := V ∪ V ′;

(2) If (x, y) ∈ E, we introduce two edges (x, y′) and (x′, y) in Ẽ.

Obviously, G̃ is a bipartite graph. So the spectrum of the transition matrix P̃ on G̃ is
symmetric about 0. Denote the eigenvalues of P̃ as

−1 = λ̃1 < λ̃2 ⩽ λ̃3 ⩽ · · · ⩽ λ̃2n−1 < λ̃2n = 1.

Set t̃rel :=
1

1−λ̃2n−1
. Because the eigenvalues of P are also eigenvalues of P̃ , we have

trel ⩽ t̃rel.

b) It is easy to show that diam(G̃) ⩽ 4 diam(G) + 1. Using a similar argument as in
[Oliveira and Peres, 2019, Proposition 3.1], one may get that

t̃rel ⩽ diam(G̃)wt(Ṽ ) ⩽ 2
(
4 diam(G) + 1

)
wt(V )

⩽ 2

(
4
( 3n

dmin
− 1

)
+ 1

)
wt(V ) <

24n

dmin
wt(V ) =

24n2davg

dmin
.

For non-empty A ⊊ V and x ∈ V \ A, define G(x, x;A) := Ex

[∑τA−1
s=0 1{Xs /∈A}

]
.

Proposition A.6. We have

G(x, x;A)

π(x)
⩽ 9

2

(davgn

dmin

)2(
1− π(A)

)
.
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Proof. By [Lyons and Peres, 2017, Eq. (2.5)] and network reduction, we have

G(x, x;A)

π(x)
⩽ wt(V )Reff(x↔ A) = davgnReff(x↔ A),

where Reff(x ↔ A) is the effective resistance between x and A. Then we need only follow
the proof of [Oliveira and Peres, 2019, Proposition 3.2] to get

Reff(x↔ A) ⩽ 9davgn

2d2min

(
1− π(A)

)
.

Now fix x ∈ V . For α > 1, let

Aα :=
{
y ∈ V ; gt′(y, x) ⩽ απ(x)(t′ + 1)

}
.

We claim that Aα 6= ∅ for α > 1. In fact,

1− π(Aα) =
∑
y/∈Aα

π(y) <
∑
y/∈Aα

π(y)
gt′(y, x)

απ(x)(t′ + 1)

=
∑
y/∈Aα

π(x)gt′(x, y)

απ(x)(t′ + 1)
⩽ 1

α

∑
y∈V

gt′(x, y)

t′ + 1

=
1

α
< 1.

(A.4)

So for α > 1, Aα is non-empty.

Lemma A.7. For x ∈ V ,
gt′(x, x)

π(x)
⩽ 6davgn

dmin

√
t′ + 1.

Proof. a) Set α0 :=
5davgn
dmin

· 1√
t′+1

. We claim α0 > 1. In fact, we have

α0 =
5davgn

dmin
· 1√

t′ + 1
=

5davgn

dmin
· 1√

2dtrel/2e − 1

⩾ 5davgn

dmin
· 1√

trel + 2− 1
>

5davgn

dmin
· 1√

24davgn2

dmin
+ 2− 1

⩾ 5davgn

dmin
· 1√

25davgn2

dmin

=

√
davg

dmin
⩾ 1.

Therefore, α0 > 1. As a consequence, Aα0 is non-empty.
b) If x ∈ Aα0 , by the definition of Aα0 ,

gt′(x, x)

π(x)
⩽ α0(t

′ + 1) =
5davgn

dmin

√
t′ + 1.
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c) If x /∈ Aα0 , by the strong Markov property, Proposition A.6, and the definition of Aα0 ,

gt′(x, x)

π(x)
⩽ G(x, x;Aα0)

π(x)
+ Ex

[
gt′(XτAα0

, x)

π(x)

]
⩽ 9

2
·
(davgn

dmin

)2(
1− π(Aα0)

)
+ α0(t

′ + 1)

⩽ 9

2
·
(davgn

dmin

)2 1

α0

+ α0(t
′ + 1)

= ( 9
10

+ 5)
√
t′ + 1

davgn

dmin

<
6davgn

dmin

√
t′ + 1,

where the third inequality is by Eq. (A.4).

We are now in position to prove Theorem A.3.

Proof of Theorem A.3. a) Recalling that t′ = 2dtrel/2e−2, we have t′ ⩽ trel. By Lemmas A.4
and A.7, for t ≡ 0 mod 2 and x ∈ V ,

0 ⩽ pt(x, x)− π(x) ⩽
1

1− e−1
· gt

′(x, x)
t
2
+ 1

⩽ 6davgnπ(x)

(1− e−1)( t
2
+ 1)dmin

√
t′ + 1 =

6d(x)

(1− e−1)( t
2
+ 1)dmin

√
t′ + 1

⩽ 6d(x)

(1− e−1)( t
2
+ 1)dmin

√
trel + 1 ⩽ 10d(x)

dmin

√
trel + 1
t
2
+ 1

=
20d(x)

√
trel + 1

(t+ 2)dmin
.

Therefore, for t ≡ 0 mod 2 and x ∈ V , we have

0 ⩽ pt(x, x)− π(x) ⩽
20d(x)

√
trel + 1

(t+ 1)dmin
.

b) Our calculation in part a) implies that for t ≡ 0 mod 2,

pt(x, x)− π(x) =
∫
(−1,1)

λt ‖IP (dλ)ex‖2w ⩽ 20d(x)
√
trel + 1

(t+ 2)dmin
.

Therefore, for t ≡ 1 mod 2, we have∣∣pt(x, x)− π(x)∣∣ = ∣∣∣∫
(−1,1)

λt ‖IP (dλ)ex‖2w
∣∣∣ ⩽ ∫

(−1,1)

|λ|t ‖IP (dλ)ex‖2w

=

∫
(−1,1)

|λ|(t−1)/2|λ|(t+1)/2 ‖IP (dλ)ex‖2w.
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Hence, the Cauchy–Schwarz inequality gives

∣∣pt(x, x)− π(x)∣∣ ⩽ √∫
(−1,1)

|λ|t−1 ‖IP (dλ)ex‖2w

√∫
(−1,1)

|λ|t+1 ‖IP (dλ)ex‖2w

⩽ 20d(x)
√
trel + 1√

(t− 1 + 2)(t+ 1 + 2) dmin
<

20d(x)
√
trel + 1

(t+ 1)dmin
.
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